OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2003–2011

Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide

Kang Tan, David Marpaung, Ravi Pant, Feng Gao, Enbang Li, Jian Wang, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, Junqiang Sun, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2003-2011 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As2S3 chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

© 2013 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 23, 2012
Revised Manuscript: December 31, 2012
Manuscript Accepted: January 10, 2013
Published: January 17, 2013

Kang Tan, David Marpaung, Ravi Pant, Feng Gao, Enbang Li, Jian Wang, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, Junqiang Sun, and Benjamin J. Eggleton, "Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide," Opt. Express 21, 2003-2011 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003). [CrossRef]
  2. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007). [CrossRef]
  3. S. Pan and J. Yao, “UWB-over-fiber communications: Modulation and transmission,” J. Lightwave Technol.28(16), 2445–2455 (2010). [CrossRef]
  4. C. Wang, F. Zeng, and J. Yao, “All-Fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett.19(3), 137–139 (2007). [CrossRef]
  5. Q. Wang and J. Yao, “UWB doublet generation using nonlinearly-biased electro-optic intensity modulator,” Electron. Lett.42(22), 1304–1305 (2006). [CrossRef]
  6. S. T. Abraha, C. M. Okonkwo, E. Tangdiongga, and A. M. J. Koonen, “Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses,” Opt. Lett.36(12), 2363–2365 (2011). [CrossRef] [PubMed]
  7. F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett.18(19), 2062–2064 (2006). [CrossRef]
  8. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express15(26), 18156–18161 (2007). [CrossRef] [PubMed]
  9. E. Zhou, X. Xu, K.-S. Lui, and K. K. Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple pm-im conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010). [CrossRef]
  10. D. Marpaung, L. Chevalier, M. Burla, and C. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011). [CrossRef] [PubMed]
  11. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006). [CrossRef]
  12. Q. Wang and J. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express15(22), 14667–14672 (2007). [CrossRef] [PubMed]
  13. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009). [CrossRef] [PubMed]
  14. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express17(5), 3521–3530 (2009). [CrossRef] [PubMed]
  15. K. Tan, J. Shao, J. Sun, and J. Wang, “Photonic ultra-wideband pulse generation, hybrid modulation and dispersion-compensation-free transmission in multi-access communication systems,” Opt. Express20(2), 1184–1201 (2012). [CrossRef] [PubMed]
  16. Y. Yue, H. Huang, L. Zhang, J. Wang, J.-Y. Yang, O. F. Yilmaz, J. S. Levy, M. Lipson, and A. E. Willner, “UWB monocycle pulse generation using two-photon absorption in a silicon waveguide,” Opt. Lett.37(4), 551–553 (2012). [CrossRef] [PubMed]
  17. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” arXiv:1211.4114 (2012).
  18. J. Capmany, I. Gasulla, and S. Sales, “Microwave photonics: Harnessing slow light,” Nat. Photonics5(12), 731–733 (2011). [CrossRef]
  19. M. Mirshafiei, S. LaRochelle, and L. A. Rusch, “Optical UWB waveform generation using a micro-ring resonator,” IEEE Photon. Technol. Lett.24(15), 1316–1318 (2012). [CrossRef]
  20. V. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express15(15), 9205–9221 (2007). [CrossRef] [PubMed]
  21. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  22. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser & Photonics Reviews6(1), 97–114 (2012). [CrossRef]
  23. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011). [CrossRef] [PubMed]
  24. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37(5), 969–971 (2012). [CrossRef] [PubMed]
  25. A. Byrnes, R. Pant, E. Li, D.-Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express20(17), 18836–18845 (2012). [CrossRef] [PubMed]
  26. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics3(3), 139–143 (2009). [CrossRef]
  27. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration of a fourth-order polezero optical filter integrated using CMOS processes,” J. Lightwave Technol.25(1), 87–92 (2007). [CrossRef]
  28. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011). [CrossRef] [PubMed]
  29. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited