OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2024–2031

Bending effects on lasing action of semiconductor nanowires

Weisong Yang, Yaoguang Ma, Yipei Wang, Chao Meng, Xiaoqin Wu, Yu Ye, Lun Dai, Limin Tong, Xu Liu, and Qing Yang  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2024-2031 (2013)
http://dx.doi.org/10.1364/OE.21.002024


View Full Text Article

Enhanced HTML    Acrobat PDF (1217 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High flexibility has been one of advantages for one-dimensional semiconductor nanowires (NWs) in wide application of nanoscale integrated circuits. We investigate the bending effects on lasing action of CdSe NWs. Threshold increases and differential efficiency decreases gradually when we decrease the bending radius step by step. Red shift and mode reduction in the output spectra are also observed. The bending loss of laser oscillation is considerably larger than that of photoluminescence (PL), and both show the exponential relationship with the bending radius. Diameter and mode dependent bending losses are investigated. Furthermore, the polarizations of output can be modulated linearly by bending the NWs into different angles continuously.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(260.5430) Physical optics : Polarization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 26, 2012
Revised Manuscript: November 16, 2012
Manuscript Accepted: January 9, 2013
Published: January 18, 2013

Citation
Weisong Yang, Yaoguang Ma, Yipei Wang, Chao Meng, Xiaoqin Wu, Yu Ye, Lun Dai, Limin Tong, Xu Liu, and Qing Yang, "Bending effects on lasing action of semiconductor nanowires," Opt. Express 21, 2024-2031 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nature2, 484–488 (2006).
  2. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  3. J. Kim, A. Shinya, K. Nozaki, H. Taniyama, C.-H. Chen, T. Sato, S. Matsuo, and M. Notomi, “Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser,” Opt. Express20(11), 11643–11651 (2012). [CrossRef] [PubMed]
  4. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices7(4), 331–339 (2005). [CrossRef] [PubMed]
  5. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowires photonic circuits elements,” Nano Lett.4(10), 1981–1985 (2004). [CrossRef]
  6. R. X. Yan, D. Gargas, and P. D. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  7. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  8. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003). [CrossRef] [PubMed]
  9. S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett.87(17), 173111 (2005). [CrossRef]
  10. M. A. Zimmler, J. M. Bao, F. Capasso, S. Müller, and C. Ronning, “Laser action in nanowires observation of the transition from amplified spontaneous emission to laser oscillation,” Appl. Phys. Lett.93(5), 051101 (2008). [CrossRef]
  11. J. He and C. M. Lilley, “Surface effect on the elastic behavior of static bending nanowires,” Nano Lett.8(7), 1798–1802 (2008). [CrossRef] [PubMed]
  12. S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. Yang, and Z. L. Wang, “Self-powered nanowire devices,” Nat. Nanotechnol.5(5), 366–373 (2010). [CrossRef] [PubMed]
  13. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J.48, 2103–2132 (1969).
  14. X. B. Han, L. Z. Kou, X. L. Lang, J. B. Xia, N. Wang, R. Qin, J. Xu, Z. M. Liao, X. Z. Zhang, X. D. Shan, X. F. Song, J. Y. Gao, W. L. Guo, and D. P. Yu, “Electronic and mechanical coupling in bent ZnO nanowires,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4937–4941 (2009). [CrossRef]
  15. J. N. Chen, G. Conache, M. E. Pistol, S. M. Gray, M. T. Borgström, H. Xu, H. Q. Xu, L. Samuelson, and U. Håkanson, “Probing strain in bent semiconductor nanowires with Raman spectroscopy,” Nano Lett.10(4), 1280–1286 (2010). [CrossRef] [PubMed]
  16. H. K. Yu, S. S. Wang, J. Fu, M. Qiu, Y. H. Li, F. X. Gu, and L. M. Tong, “Modeling bending losses of optical nanofibers or nanowires,” Appl. Opt.48(22), 4365–4369 (2009). [CrossRef] [PubMed]
  17. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004). [CrossRef] [PubMed]
  18. Q. Fu, Z. Y. Zhang, L. Z. Kou, P. C. Wu, X. B. Han, X. L. Zhu, J. Y. Gao, J. Xu, Q. Zhao, W. L. Guo, and D. P. Yu, “Linear strain-gradient effect on the energy bandgap in bent CdS nanowires,” Nano Res.4(3), 308–314 (2011). [CrossRef]
  19. M. Khorasaninejad and S. S. Saini, “Bend waveguides on silicon nanowire optical waveguides (SNOW),” IEEE Photon. J.3(4), 696–702 (2011). [CrossRef]
  20. B. Yan, R. Chen, W. W. Zhou, J. X. Zhang, H. D. Sun, H. Gong, and T. Yu, “Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires,” Nanotechnology21(44), 445706 (2010). [CrossRef] [PubMed]
  21. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  22. B. Wei, K. Zheng, Y. Ji, Y. F. Zhang, Z. Zhang, and X. D. Han, “Size-dependent bandgap modulation of ZnO nanowires by tensile strain,” Nano Lett.12(9), 4595–4599 (2012). [CrossRef] [PubMed]
  23. P. J. Pauzauskie, D. J. Sirbuly, and P. D. Yang, “Semiconductor nanowire ring resonator laser,” Phys. Rev. Lett.96(14), 143903 (2006). [CrossRef] [PubMed]
  24. Y. Xiao, C. Meng, P. Wang, Y. Ye, H. K. Yu, S. S. Wang, F. X. Gu, L. Dai, and L. M. Tong, “Single-nanowire single-mode Laser,” Nano Lett.11(3), 1122–1126 (2011). [CrossRef] [PubMed]
  25. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett.88(22), 223501 (2006). [CrossRef]
  26. S. Maikap, M. H. Liao, F. Yuan, M. H. Lee, C.-F. Huang, S. T. Chang, and C. W. Liu, “Package-strain-enhanced device and circuit performance,” IEDM. Tech. Dig., 233–236 (2004).
  27. W. Demtrӧder, Laser Spectroscopy (Springer, 2003).
  28. C. Ma, Y. Ding, D. Moore, X. D. Wang, and Z. L. Wang, “Single-crystal CdSe nanosaws,” J. Am. Chem. Soc.126(3), 708–709 (2004). [CrossRef] [PubMed]
  29. A. E. Siegman, Lasers (University Science Books, Sausalito, CA, 1986).
  30. M. A. Zimmler, F. Capasso, S. Müller, and C. Ronning, “Optically pumped nanowire lasers: invited review,” Semicond. Sci. Technol.25(2), 024001 (2010). [CrossRef]
  31. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005). [CrossRef]
  32. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett.15(1), 36–38 (2003). [CrossRef]
  33. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science294(5545), 1313–1317 (2001). [CrossRef] [PubMed]
  34. J. Zhou, Y. D. Gu, P. Fei, W. J. Mai, Y. F. Gao, R. S. Yang, G. Bao, and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano Lett.8(9), 3035–3040 (2008). [CrossRef] [PubMed]
  35. A. V. Maslov and C. Z. Ning, “Reflection of guided modes in a semiconductor nanowire laser,” Appl. Phys. Lett.83(6), 1237–1239 (2003). [CrossRef]
  36. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  37. J. C. Johnson, H. Q. Yan, P. D. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” J. Phys. Chem. B107(34), 8816–8828 (2003). [CrossRef]
  38. S. S. Wang, Z. F. Hu, H. K. Yu, W. Fang, M. Qiu, and L. M. Tong, “Endface reflectivities of optical nanowires,” Opt. Express17(13), 10881–10886 (2009). [CrossRef] [PubMed]
  39. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited