OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2097–2109

The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy

Jiun-Yann Yu, Daniel B. Holland, Geoffrey A. Blake, and Chin-Lin Guo  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2097-2109 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical investigation of an optical microscope design that achieves wide-field, multiphoton fluorescence microscopy with finer axial resolution than confocal microscopy. Our technique creates a thin plane of excitation light at the sample using height-staggered microlens arrays (HSMAs), wherein the height staggering of microlenses generate temporal focusing to suppress out-of-focus excitation, and the dense spacing of microlenses enables the implementation of structured illumination technique to eliminate residual out-of-focus signal. We use physical optics-based numerical simulations to demonstrate that our proposed technique can achieve diffraction-limited three-dimensional imaging through a simple optical design.

© 2013 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(180.6900) Microscopy : Three-dimensional microscopy
(260.1960) Physical optics : Diffraction theory
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: October 31, 2012
Revised Manuscript: December 23, 2012
Manuscript Accepted: December 26, 2012
Published: January 18, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Jiun-Yann Yu, Daniel B. Holland, Geoffrey A. Blake, and Chin-Lin Guo, "The wide-field optical sectioning of microlens array and structured illumination-based plane-projection multiphoton microscopy," Opt. Express 21, 2097-2109 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006). [CrossRef]
  2. W. Denk, J. Strickler, and W. Webb, “2-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990). [CrossRef] [PubMed]
  3. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305, 1007–1009 (2004). [CrossRef] [PubMed]
  4. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13, 1468–1476 (2005). [CrossRef] [PubMed]
  5. T. Wilson, Confocal Microscopy (Academic Press, 1990).
  6. M. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22, 1905–1907 (1997). [CrossRef]
  7. B. Masters, P. So, C. Buehler, N. Barry, J. Sutin, W. Mantulin, and E. Gratton, “Mitigating thermal mechanical damage potential during two-photon dermal imaging,” J. Biomed. Opt.9, 1265–1270 (2004). [CrossRef] [PubMed]
  8. I. Akira, T. Takeo, I. Katsumi, S. Yumiko, K. Yasuhito, M. Kenta, A. Michio, and U. Isao, “High-speed confocal fluorescence microscopy using a nipkow scanner with microlenses for 3-d imaging of single fluorescent molecule in real time,” Bioimaging4, 57–62 (1996-06).
  9. J. Bewersdorf, R. Pick, and S. Hell, “Multifocal multiphoton microscopy,” Opt. Lett.23, 655–657 (1998). [CrossRef]
  10. V. Andresen, A. Egner, and S. Hell, “Time-multiplexed multifocal multiphoton microscope,” Opt. Lett.26, 75–77 (2001). [CrossRef]
  11. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods7, 637–U55 (2010). [CrossRef] [PubMed]
  12. J.-Y. Yu, C.-H. Kuo, D. B. Holland, Y. Chen, M. Ouyang, G. A. Blake, R. Zadoyan, and C.-L. Guo, “Wide-field optical sectioning for live-tissue imaging by plane-projection multiphoton microscopy,” J. Biomed. Opt.16, 116009 (2011). [CrossRef] [PubMed]
  13. C. Ventalon and J. Mertz, “Quasi-confocal fluorescence sectioning with dynamic speckle illumination,” Opt. Lett.30, 3350–3352 (2005). [CrossRef]
  14. A. Egner and S. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A17, 1192–1201 (2000). [CrossRef]
  15. J. Jahns and K.-H. Brenner, Microoptics: from Technology to Applications, vol. v. 97 (Springer, 2004).
  16. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Cambridge University Press, 1997).
  17. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett.33, 1819–21 (2008). [CrossRef] [PubMed]
  18. D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging with speckle illumination hilo microscopy,” J. Biomed. Opt.16, 016014 (2011). [CrossRef] [PubMed]
  19. R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt.45, 5037–5045 (2006). [CrossRef] [PubMed]
  20. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3979 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited