OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2118–2125

Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses

Brantley A. West, Paul G. Giokas, Brian P. Molesky, Andrew D. Ross, and Andrew M. Moran  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2118-2125 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Knowledge of elementary relaxation processes in small molecules and proteins motivates the extension of two-dimensional photon echo (2DPE) spectroscopy further into the UV wavelength range. Here, we describe our development of a four-wave mixing spectrometer employing 200 nm laser pulses. Filamentation of laser beams in both air and argon yields 200 nm pulses with 60 fs durations. These 200 nm pulses are used to probe dynamics initiated at 267 nm in transient grating and 2DPE experiments conducted on adenosine. This study demonstrates that these femtosecond spectroscopies may indeed be carried out at the shortest wavelengths feasible in aqueous solutions.

© 2013 OSA

OCIS Codes
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:

Original Manuscript: November 26, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: January 9, 2013
Published: January 18, 2013

Brantley A. West, Paul G. Giokas, Brian P. Molesky, Andrew D. Ross, and Andrew M. Moran, "Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses," Opt. Express 21, 2118-2125 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem.54(1), 425–463 (2003). [CrossRef] [PubMed]
  2. J. P. Ogilvie and K. J. Kubarych, “Multidimensional electronic and vibrational spectroscopy: An ultrafast probe of molecular relaxation and reaction dynamics,” Adv. At. Mol. Opt. Phys.57, 249–321 (2009). [CrossRef]
  3. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).
  4. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature446(7137), 782–786 (2007). [CrossRef] [PubMed]
  5. M. D. Fayer, “Dynamics of liquids, molecules, and proteins measured with ultrafast 2D IR vibrational echo chemical exchange spectroscopy,” Annu. Rev. Phys. Chem.60(1), 21–38 (2009). [CrossRef] [PubMed]
  6. E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature463(7281), 644–647 (2010). [CrossRef] [PubMed]
  7. R. A. Nicodemus, K. Ramasesha, S. T. Roberts, and A. Tokmakoff, “Hydrogen bond rearrangements in water probed with temperature-dependent 2D IR,” J. Phys. Chem. Lett.1(7), 1068–1072 (2010). [CrossRef]
  8. J. Sperling, A. Nemeth, J. Hauer, D. Abramavicius, S. Mukamel, H. F. Kauffmann, and F. Milota, “Excitons and disorder in molecular nanotubes: a 2D electronic spectroscopy study and first comparison to a microscopic model,” J. Phys. Chem. A114(32), 8179–8189 (2010). [CrossRef] [PubMed]
  9. G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proc. Natl. Acad. Sci. U.S.A.107(29), 12766–12770 (2010). [CrossRef] [PubMed]
  10. G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.108(40), 16521–16526 (2011). [CrossRef] [PubMed]
  11. D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc.132(22), 7769–7775 (2010). [CrossRef] [PubMed]
  12. A. Cannizzo, “Ultrafast UV spectroscopy: from a local to a global view of dynamical processes in macromolecules,” Phys. Chem. Chem. Phys.14(32), 11205–11223 (2012). [CrossRef] [PubMed]
  13. C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express17(21), 18788–18793 (2009). [CrossRef] [PubMed]
  14. U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett.35(24), 4178–4180 (2010). [CrossRef] [PubMed]
  15. B. A. West, J. M. Womick, and A. M. Moran, “Probing ultrafast dynamics in adenine with mid-UV four-wave mixing spectroscopies,” J. Phys. Chem. A115(31), 8630–8637 (2011). [CrossRef] [PubMed]
  16. B. A. West and A. M. Moran, “Two-dimensional electronic spectroscopy in the ultraviolet wavelength range,” J. Phys. Chem. Lett.3(18), 2575–2581 (2012). [CrossRef]
  17. C.-H. Tseng, P. Sándor, M. Kotur, T. C. Weinacht, and S. Matsika, “Two-dimensional Fourier transform spectroscopy of adenine and uracil using shaped ultrafast laser pulses in the deep UV,” J. Phys. Chem. A116(11), 2654–2661 (2012). [CrossRef] [PubMed]
  18. G. Auböck, C. Consani, F. van Mourik, and M. Chergui, “Ultrabroadband femtosecond two-dimensional ultraviolet transient absorption,” Opt. Lett.37(12), 2337–2339 (2012). [CrossRef] [PubMed]
  19. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B15(6), 1791–1794 (1998). [CrossRef]
  20. C. G. Durfee, L. Misoguti, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Phase matching in cascaded third-order processes,” J. Opt. Soc. Am. B19(4), 822–831 (2002). [CrossRef]
  21. A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett.87(2), 021107 (2005). [CrossRef]
  22. T. Fuji, T. Horio, and T. Suzuki, “Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas,” Opt. Lett.32(17), 2481–2483 (2007). [CrossRef] [PubMed]
  23. T. Fuji, T. Suzuki, E. E. Serebryannikov, and A. Zheltikov, “Experimental and theoretical investigation of a multicolor filament,” Phys. Rev. A80(6), 063822 (2009). [CrossRef]
  24. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/snlo .
  25. N. Aközbek, A. Becker, and S. L. Chin, “Propagation and filamentation of femtosecond laser pulses in optical media,” Laser Phys.15, 607–615 (2005).
  26. R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett.12(7), 483–485 (1987). [CrossRef] [PubMed]
  27. M. J. Tauber, R. A. Mathies, X. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum.74(11), 4958–4960 (2003). [CrossRef]
  28. J.-M. L. Pecourt, J. Peon, and B. Kohler, “DNA excited-state dynamics: Ultrafast internal conversion and vibrational cooling in a series of nucleosides,” J. Am. Chem. Soc.123(42), 10370–10378 (2001). [CrossRef] [PubMed]
  29. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  30. S. A. Kovalenko, R. Schanz, H. Hennig, and N. P. Ernsting, “Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy,” J. Chem. Phys.115(7), 3256–3273 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited