OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2147–2153

Linewidth enhancement in spasers and plasmonic nanolasers

Pavel Ginzburg and Anatoly V. Zayats  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2147-2153 (2013)
http://dx.doi.org/10.1364/OE.21.002147


View Full Text Article

Enhanced HTML    Acrobat PDF (1162 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The concept of spaser as the coherent near-field generator and nanolaser based on nanoscale plasmonic resonators has been successfully demonstrated in number of experiments. Here we have developed the theoretical framework for the basic linewidth description of these active plasmonic structures and, in particular, linewidth enhancement – additional line broadening due to the resonator noise. In order to achieve this, we have introduced explicitly the time dependence in the quasistatic description of localized surface plasmon resonances via inclusion of the dispersion of a spectral parameter defining the resonant frequency. Linewidth enhancement factor was estimated for semiconductor gain medium and was found to be of order of 3 to 6, strongly depending on carrier density in the active layer, and resulting in more than order of magnitude broader linewidth compared to that, predicted by the Schawlow-Townes theory.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 19, 2012
Revised Manuscript: December 15, 2012
Manuscript Accepted: December 16, 2012
Published: January 22, 2013

Virtual Issues
January 23, 2013 Spotlight on Optics

Citation
Pavel Ginzburg and Anatoly V. Zayats, "Linewidth enhancement in spasers and plasmonic nanolasers," Opt. Express 21, 2147-2153 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2147


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Orenstein, A. C. V. Lehmen, C. Chang-Hasnain, N. G. Stoffel, J. P. Harbison, L. T. Florez, E. Clausen, and J. E. Jewell, “Vertical?cavity surface?emitting InGaAs/GaAs lasers with planar lateral definition,” Appl. Phys. Lett.56(24), 2384–2386 (1990). [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (New York, Springer, 2007).
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  4. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap Plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006). [CrossRef] [PubMed]
  5. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with ?/4 impedance matching,” Opt. Express15(11), 6762–6767 (2007). [CrossRef] [PubMed]
  6. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  7. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  8. E. Feigenbaum and M. Orenstein, “Ultrasmall volume plasmons, yet with complete retardation effects,” Phys. Rev. Lett.101(16), 163902 (2008). [CrossRef] [PubMed]
  9. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012). [CrossRef] [PubMed]
  10. D. J. Bergman and M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  11. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  12. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev.112(6), 1940–1949 (1958). [CrossRef]
  13. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron.18(2), 259–264 (1982). [CrossRef]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2012).
  15. M. I. Stockman, “Spaser as Nanoscale Quantum Generator and Ultrafast Amplifier,” J. Opt.12(2), 024004 (2010). [CrossRef]
  16. G. B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, 1974).
  17. R. E. Noskov, P. A. Belov, and Y. S. Kivshar, “Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays,” Phys. Rev. Lett.108(9), 093901 (2012). [CrossRef] [PubMed]
  18. C. H. Henry, R. A. Logan, and K. A. Bertness, “Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers,” J. Appl. Phys.52(7), 4457–4461 (1981). [CrossRef]
  19. K. Vahala, L. C. Chiu, S. Margalit, and A. Yariv, “On the linewidth enhancement factor ? in semiconductor injection lasers,” Appl. Phys. Lett.42(8), 631–633 (1983). [CrossRef]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  21. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon Hybridization in Nanoparticle Dimers,” Nano Lett.4(5), 899–903 (2004). [CrossRef]
  22. B. N. Khlebtsov and N. G. Khlebtsov, “Multipole Plasmons in Metal Nanorods:?Scaling Properties and Dependence on Particle Size, Shape, Orientation, and Dielectric Environment,” J. Phys. Chem. C111(31), 11516–11527 (2007). [CrossRef]
  23. N. Berkovitch, P. Ginzburg, and M. Orenstein, “Concave plasmonic particles: broad-band geometrical tunability in the near-infrared,” Nano Lett.10(4), 1405–1408 (2010). [CrossRef] [PubMed]
  24. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, and M. Orenstein, “Resonances On-Demand for Plasmonic Nano-Particles,” Nano Lett.11(6), 2329–2333 (2011). [CrossRef] [PubMed]
  25. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (Wiley-Blackwell 1995).
  26. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, 1999).
  27. J. G. Mendoza?Alvarez, F. D. Nunes, and N. B. Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys.51(8), 4365–4367 (1980). [CrossRef]
  28. P. Ginzburg and A. V. Zayats, “Non-exponential decay of dark localized surface plasmons,” Opt. Express20(6), 6720–6727 (2012). [CrossRef] [PubMed]
  29. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited