OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2220–2235

Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging

M. Krenkel, M. Bartels, and T. Salditt  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2220-2235 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have implemented a deterministic method for solving the phase problem in hard x-ray in-line holography which overcomes the twin image problem. The phase distribution in the detector plane is retrieved by using two images with slightly different Fresnel numbers. We then use measured intensities and reconstructed phases in the detection plane to compute the exit wave in the sample plane. No further a priori information like a limited support or the assumption of pure phase objects is necessary so that it can be used for a wide range of complex samples. Using a nano-focused hard x-ray beam half period resolutions better than 30 nm are achieved.

© 2013 OSA

OCIS Codes
(340.7440) X-ray optics : X-ray imaging
(340.7460) X-ray optics : X-ray microscopy
(090.1995) Holography : Digital holography

ToC Category:
X-ray Optics

Original Manuscript: November 21, 2012
Revised Manuscript: December 16, 2012
Manuscript Accepted: December 16, 2012
Published: January 23, 2013

M. Krenkel, M. Bartels, and T. Salditt, "Transport of intensity phase reconstruction to solve the twin image problem in holographic x-ray imaging," Opt. Express 21, 2220-2235 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barnea, “Quantitative phase imaging using hard x-rays,” Phys. Rev. Lett.77, 2961–2964 (1996). [CrossRef] [PubMed]
  2. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384, 335–338 (1996). [CrossRef]
  3. K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys.59, 1–99 (2010). [CrossRef]
  4. T. Salditt, K. Giewekemeyer, C. Fuhse, S. P. Kruger, R. Tucoulou, and P. Cloetens, “Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer,” Phys. Rev. B79, 184112(2009).
  5. S. Mayo, P. Miller, S. Wilkins, T. Davis, D. Gao, T. Gureyev, D. Paganin, D. Parry, A. Pogany, and A. Stevenson, “Quantitative x-ray projection microscopy: phase-contrast and multi-spectral imaging.” J. Microsc.207, 79–96 (2002). [CrossRef] [PubMed]
  6. P. Cloetens, W. Ludwig, J. Baruchel, D. V. Dyck, J. V. Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett.75, 2912–2914 (1999). [CrossRef]
  7. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in x-ray phase-contrast imaging suitable for tomography,” Opt. Express19, 10359–10376 (2011). [CrossRef] [PubMed]
  8. B. D. Arhatari and A. G. Peele, “Optimisation of phase imaging geometry,” Opt. Express18, 23727–23739 (2010). [CrossRef] [PubMed]
  9. J. Moosmann, R. Hofmann, A. Bronnikov, and T. Baumbach, “Nonlinear phase retrieval from single-distance radiograph,” Opt. Express18, 25771–25785 (2010). [CrossRef] [PubMed]
  10. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena)35, 237–246 (1972).
  11. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982). [CrossRef] [PubMed]
  12. K. Giewekemeyer, S. P. Krüger, S. Kalbfleisch, M. Bartels, C. Beta, and T. Salditt, “X-ray propagation microscopy of biological cells using waveguides as a quasipoint source,” Phys. Rev. A83, 023804 (2011). [CrossRef]
  13. M. Bartels, M. Priebe, R. Wilke, S. Kruger, K. Giewekemeyer, S. Kalbfleisch, C. Olendrowitz, M. Sprung, and T. Salditt, “Low-dose three-dimensional hard x-ray imaging of bacterial cells,” Opt. Nanoscopy1, 10 (2012). [CrossRef]
  14. T. E. Gureyev, T. J. Davis, A. Pogany, S. C. Mayo, and S. W. Wilkins, “Optical phase retrieval by use of first born- and rytov-type approximations,” Appl. Opt.43, 2418–2430 (2004). [CrossRef] [PubMed]
  15. L. Turner, B. Dhal, J. Hayes, A. Mancuso, K. Nugent, D. Paterson, R. Scholten, C. Tran, and A. Peele, “X-ray phase imaging: Demonstration of extended conditions for homogeneous objects,” Opt. Express12, 2960–2965 (2004). [CrossRef] [PubMed]
  16. D. P. J.B Tiller, A Barty, and K. Nugent, “The holographic twin image problem: a deterministic phase solution,” Opt. Comm.183, 7–14 (2000). [CrossRef]
  17. D. Gabor, “A new microscopic principle,” Nature161, 777–778 (1948). [CrossRef] [PubMed]
  18. J. W. Goodman, Introduction to Fourier optics (Roberts & Company: Englewood, Colorado, 2005).
  19. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am.73, 1434–1441 (1983). [CrossRef]
  20. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80, 2586–2589 (1998). [CrossRef]
  21. D. M. Paganin, Coherent X-ray Optics (New York: Oxford University Press, 2006). [CrossRef]
  22. A. Groso, R. Abela, and M. Stampanoni, “Implementation of a fast method for high resolutionphase contrast tomography,” Opt. Express14, 8103–8110 (2006). [CrossRef] [PubMed]
  23. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables54, 181–342 (1993). [CrossRef]
  24. S. Kalbfleisch, H. Neubauer, S. P. Krüger, M. Bartels, M. Osterhoff, D. D. Mai, K. Giewekemeyer, B. Hartmann, M. Sprung, and T. Salditt, “The Göttingen holography endstation of beamline P10 at PETRA III/DESY,” AIPConf.Proc.1365, 96–99 (2011).
  25. T. Salditt, S. Kalbfleisch, M. Osterhoff, S. P. Krüger, M. Bartels, K. Giewekemeyer, H. Neubauer, and M. Sprung, “Partially coherent nano-focused x-ray radiation characterized by Talbot interferometry,” Opt. Express19, 9656–9675 (2011). [CrossRef] [PubMed]
  26. S. P. Krüger, K. Giewekemeyer, S. Kalbfleisch, M. Bartels, H. Neubauer, and T. Salditt, “Sub-15 nm beam confinement by two crossed x-ray waveguides,” Opt. Express18, 13492–13501 (2010). [CrossRef] [PubMed]
  27. C. Olendrowitz, M. Bartels, M. Krenkel, A. Beerlink, R. Mokso, M. Sprung, and T. Salditt, “Phase-contrast x-ray imaging and tomography of the nematode Caenorhabditis elegans,” Phys. Med. Biol.57, 5309–5323 (2012). [CrossRef] [PubMed]
  28. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33, 156–158 (2008). [CrossRef] [PubMed]
  29. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum.68, 2774–2782 (1997). [CrossRef]
  30. S. P. Krüger, H. Neubauer, M. Bartels, S. Kalbfleisch, K. Giewekemeyer, P. J. Wilbrandt, M. Sprung, and T. Salditt, “Sub-10 nm beam confinement by X-ray waveguides: design, fabrication and characterization of optical properties,” J. Synchrotron Radiat.19, 227–236 (2012). [CrossRef] [PubMed]
  31. S. P. Krüger, “Optimization of waveguide optics for lensless x-ray imaging,” Ph.D. thesis, Universität Göttingen (2010).
  32. D. L. Misell, “An examination of an iterative method for the solution of the phase problem in optics and electron optics: Ii. sources of error,” J. Phys. D: Appl. Phys6, 2217 (1973). [CrossRef]
  33. T. E. Gureyev, “Composite techniques for phase retrieval in the Fresnel region,” Opt. Commun.220, 49 – 58 (2003). [CrossRef]
  34. D. Paganin, S. Mayo, T. Gureyev, P. Miller, and S. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc.206, 33–40 (2002). [CrossRef] [PubMed]
  35. A. Liu, D. Paganin, L. Bourgeois, and P. Nakashima, “Projected thickness reconstruction from a single defocused transmission electron microscope image of an amorphous object,” Ultramicroscopy111, 959–968 (2011). [CrossRef] [PubMed]
  36. T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett.98, 233901 (2007). [CrossRef] [PubMed]
  37. D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt.48, 6132–6142 (2009). [CrossRef] [PubMed]
  38. R. N. Wilke, M. Priebe, M. Bartels, K. Giewekemeyer, A. Diaz, P. Karvinen, and T. Salditt, “Hard x-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction,” Opt. Express20, 19232–19254 (2012). [CrossRef] [PubMed]
  39. M. Howells, T. Beetz, H. Chapman, C. Cui, J. Holton, C. Jacobsen, J. Kirz, E. Lima, S. Marchesini, H. Miao, D. Sayre, D. Shapiro, J. Spence, and D. Starodub, “An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy,” J.Electron Spectrosc.170, 4–12 (2009). [CrossRef]
  40. K. Giewekemeyer, “A study on new approaches in coherent x-ray microscopy of biological specimens,” Ph.D. thesis, Universität Göttingen (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited