OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2245–2262

Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties

Dominique Barchiesi, Sameh Kessentini, Nicolas Guillot, Marc Lamy de la Chapelle, and Thomas Grosges  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2245-2262 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (956 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The plasmonic nanostructures are widely used to design sensors with improved capabilities. The position of the localized surface plasmon resonance (LSPR) is part of their characteristics and deserves to be specifically studied, according to its importance in sensor tuning, especially for spectroscopic applications. In the visible and near infra-red domain, the LSPR of an array of nano-gold-cylinders is considered as a function of the diameter, height of cylinders and the thickness of chromium adhesion layer and roughness. A numerical experience plan is used to calculate heuristic laws governing the inverse problem and the propagation of uncertainties. Simple linear formulae are deduced from fitting of discrete dipole approximation (DDA) calculations of spectra and a good agreement with various experimental results is found. The size of cylinders can be deduced from a target position of the LSPR and conversely, the approximate position of the LSPR can be simply deduced from the height and diameter of cylinders. The sensitivity coefficients and the propagation of uncertainties on these parameters are evaluated from the fitting of 15500 computations of the DDA model. The case of a grating of nanodisks and of homothetic cylinders is presented and expected trends in the improvement of the fabrication process are proposed.

© 2013 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(100.3190) Image processing : Inverse problems
(130.6010) Integrated optics : Sensors
(350.4600) Other areas of optics : Optical engineering
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: November 7, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: January 9, 2013
Published: January 23, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Dominique Barchiesi, Sameh Kessentini, Nicolas Guillot, Marc Lamy de la Chapelle, and Thomas Grosges, "Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties," Opt. Express 21, 2245-2262 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. C. Le Ru and P. G. Etchegoin, Principles of sSurface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).
  2. M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011). [CrossRef]
  3. S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, USA, 2007).
  4. J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005). [CrossRef]
  5. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002). [CrossRef]
  6. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003). [CrossRef]
  7. A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B-Lasers Opt.84, 111–115 (2006). [CrossRef]
  8. N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010). [CrossRef]
  9. H.-H. Yan, Y.-Y. Xiao, S.-X. Xie, and H.-J. Li, “Tunable plasmon resonance of a touching gold cylinder arrays,” J. At. Mol. Sci.3, 252–261 (2012).
  10. A. Dasgupta and G. V. P. Kumar, “Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity,” Appl. Opt.51, 1688–1693 (2012). [CrossRef] [PubMed]
  11. B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000). [CrossRef] [PubMed]
  12. S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structures in near–field,” Eur. Phys. J.-Appl. Phys., 5, 277–281 (1999). [CrossRef]
  13. D. Barchiesi, “Pseudo modulation transfer function in reflection scanning near-field optical microscopy,” Opt. Commun.154, 167–172 (1998). [CrossRef]
  14. J. Grand, Plasmons de surface de nanoparticules : spectroscopie d’extinction en champs proche et lointain, diffusion Raman exaltée, Ph.D. thesis (Université de technologie de Troyes, 2004). [PubMed]
  15. D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008). [CrossRef]
  16. S. Kessentini and D. Barchiesi, “Roughness effect on the efficiency of dimer antenna based biosensor,” Advanced Electromagnetics (AEM)1, 41–47 (2012).
  17. L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006). [CrossRef]
  18. M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticles plasmonics,” Laser & Photon. Rev.2, 136–159 (2008). [CrossRef]
  19. D. Sharma, R. Sharma, S. Dua, and V. N. Ojha, “Pitch measurements of 1D/2D gratings using optical profiler and comparison with SEM /AFM,” in AdMet 2012, (Metrology Society of India, ARAI, Pune, India, 2012), NM 003, 1–4.
  20. G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005). [CrossRef]
  21. D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008). [CrossRef]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, 1998). [CrossRef]
  23. A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735. [CrossRef]
  24. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” J. Adv. Mater.21, 4880–4910 (2009). [CrossRef]
  25. Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008). [CrossRef]
  26. H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express20, 21278–21290 (2012). [CrossRef] [PubMed]
  27. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D.40, 7152–7158 (2007). [CrossRef]
  28. D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun.285, 1619–1623 (2012). [CrossRef]
  29. D. Barchiesi, New perspectives in biosensors technology and applications (INTECH Open Access, Rijeka, Croatia, 2011), chap. 5, pp. 105–126.
  30. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009). [CrossRef] [PubMed]
  31. F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Transactions on antennas and propagation43, 1183–1191 (1995).
  32. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A24, 522–529 (2007). [CrossRef]
  33. V. Poroshin, Y. Borovin, and D. Bogomolov, “Transfer of the surface roughness geometry into the universal FEM software ANSYS,” Advanced Engineering3, 1846–5900 (2009).
  34. A. Kato, S. Burger, and F. Scholze, “Analytical modeling and three-dimensional finite element simulation in line edge roughness in scatterometry,” Appl. Opt.51, 6457–6464 (2012). [CrossRef] [PubMed]
  35. A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011). [CrossRef]
  36. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994). [CrossRef]
  37. N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys111, 1195–1208 (1999). [CrossRef]
  38. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003). [CrossRef]
  39. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005). [CrossRef]
  40. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006). [CrossRef]
  41. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A25, 2693–2703 (2008). [CrossRef]
  42. S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy,” Biomed. Opt. Express3, 590–604 (2012). [CrossRef] [PubMed]
  43. H. Devoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964). [CrossRef]
  44. H. Devoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965). [CrossRef]
  45. E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973). [CrossRef]
  46. V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt.39, 853–861 (1992). [CrossRef]
  47. P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B67, 165404(1–5) (2003). [CrossRef]
  48. E. Zubko, D. Petrov, Y. Grynko, Y. Shkuratov, H. Okamotot, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt.49, 1267–1279 (2010). [CrossRef] [PubMed]
  49. C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009). [CrossRef]
  50. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.193, 869–875 (1995). [CrossRef]
  51. H. Parviainen and K. Lumme, “Scattering from rough thin films: discrete-dipole-approximation simulations,” J. Opt. Soc. Am. A25, 90–97 (2008). [CrossRef]
  52. B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” http://arXiv.org/abs/1002.1505v1 (2010).
  53. A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures,” Opt. Appl.36, 39–50 (2006).
  54. A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys.93, 2590–2594 (2003). [CrossRef]
  55. D. Barchiesi, “Numerical retrieval of thin aluminium layer properties from SPR experimental data,” Opt. Express20, 9064–9078 (2012). [CrossRef] [PubMed]
  56. P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972). [CrossRef]
  57. E. D. Palik, Handbook of Optical Constants (Academic Press Inc., San Diego USA, 1985).
  58. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors,” Appl. Spectrosc.59, 661–667 (2005). [CrossRef] [PubMed]
  59. H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006). [CrossRef]
  60. B. A. Sexton, B. N. Feltis, and T. J. Davis, “Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensor,” Sens. Actuator A-Phys.141, 471475 (2008).
  61. Working Group 1, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, (Joint Committee for Guides in Metrology, Paris, 1st ed., 2008, Corrected version 2010).
  62. D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in Near-Field Optics,” J. Opt. Soc. Am. A21, 1465–1471 (2004). [CrossRef]
  63. T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008). [CrossRef] [PubMed]
  64. D. Macías, A. Vial, and D. Barchiesi, “Evolution strategies approach for the solution of an inverse problem in near-field optics,” in Lecture notes in computer science (6e European Workshop on Evolutionary Computation in Image Analysis and Signal Processing), vol. 3005 / 2004, G. Raidl, S. Cagnoni, J. Branke, R. Corne, D. W. Drechsler, Y. Jin, C. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. Smith, and G. Squillero, eds. (Springer-VerlagHeidelberg, Germany, 2004), 329 –338.
  65. D. Barchiesi and T. Grosges, “Measurement of the decay lengths of the near field signal in tapping mode,” Curr. Appl. Phys.9, 1227–1231 (2009). [CrossRef]
  66. D. Barchiesi, O. Bergossi, M. Spajer, and C. Pieralli, “Image resolution in reflection scanning near-field optical microscopy (R-SNOM) using shear-force (ShF) feedback: characterization using spline and Fourier spectrum,” Appl. Opt.36, 2171–2177 (1997). [CrossRef] [PubMed]
  67. T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2, 1584–1596 (2011). [CrossRef] [PubMed]
  68. K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited