OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2279–2286

Coupling of low-order LP modes propagating in cylindrical waveguides into whispering gallery modes in microspheres

G. Adamovsky and S. Wrbanek  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2279-2286 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Whispering gallery modes in microspheres are excited by light delivered to them via optical fibers imbedded in a half-block coupler. The corresponding light intensity resonances in microspheres and coupling of two low-order linearly polarized modes in the fibers, LP01 and LP11, into the microspheres are observed. The LP01 and LP11 modes are delivered to the microsphere via a cylindrical optical fiber carrying light at two operating wavelengths, 1550 and 1300 nm correspondingly. The resonances behavioral differences generated by these fiber modes are also observed and explained. The properties of resonances generated by the LP01 and LP11 modes are analyzed using a linear polarizer inserted in the path of light propagating in optical fibers.

© 2013 OSA

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(260.5740) Physical optics : Resonance
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 15, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 5, 2013
Published: January 23, 2013

G. Adamovsky and S. Wrbanek, "Coupling of low-order LP modes propagating in cylindrical waveguides into whispering gallery modes in microspheres," Opt. Express 21, 2279-2286 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12(1), 3–14 (2006). [CrossRef]
  2. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron. 12(1), 33–39 (2006). [CrossRef]
  3. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10(2), 343–352 (1993). [CrossRef]
  4. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett. 21(10), 695–697 (1996). [CrossRef] [PubMed]
  5. G. Schweiger and M. Horn, “Effect of changes in size and index of refraction on the resonance wavelength of microspheres,” J. Opt. Soc. Am. B 23(2), 212–217 (2006). [CrossRef]
  6. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery modes—Part II: Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 15–32 (2006). [CrossRef]
  7. G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comput. Inf. Commun. 5(10), 409–424 (2008). [CrossRef]
  8. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009). [CrossRef] [PubMed]
  9. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics,” IPN Progress Report 42–162 (2005). http://tmo.jpl.nasa.gov/progress_report/42-162/162D.pdf .
  10. N. Q. Nguyen, N. Gupta, T. Ioppolo, and M. V. Ötügen, “Whispering gallery mode-based micro-optical sensors for structural health monitoring of composite materials,” J. Mater. Sci. 44(6), 1560–1571 (2009). [CrossRef]
  11. Y. Shen and J.-T. Shen, “Nanoparticle sensing using whispering-gallery-mode resonators: plasmonic and Rayleigh scatterers,” Phys. Rev. A 85(1), 013801 (2012). [CrossRef]
  12. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  13. A. W. Snyder and W. Young, “Modes of optical waveguides,” J. Opt. Soc. Am. 68(3), 297–309 (1978). [CrossRef]
  14. L. B. Jeunhomme, Single-Mode Fiber Optics: Principles and Applications, 2nd Edition, (Marcel Dekker, 1990), Chap. 1, pp. 1–59.
  15. D. Kumar and P. K. Choudhury, “Introduction to modes and their designation in circular and elliptical fibers,” Am. J. Phys. 75(6), 546–551 (2007). [CrossRef]
  16. A. Yariv, Optical Electronics, 3rd ed. (CBS College Publishing, 1985), Chap. 3, pp. 54–86.
  17. D. Marcuse, Light Transmission Optics, 2nd ed. (Van Nostrand Reinhold, 1982), Chap. 8. pp. 288–347.
  18. W. Q. Thornburg, B. J. Corrado, and X. D. Zhu, “Selective launching of higher-order modes into an optical fiber with an optical phase shifter,” Opt. Lett. 19(7), 454–456 (1994). [CrossRef] [PubMed]
  19. A. Kost, “Theory of Optical Modes in Step Index Fibers,” Photonics Communications Engineering, OPTI 500B, Lectures 17 and 18. http://opti500.cian-erc.org/opti500/pdf/Lecture_17_Optical_Fiber_Modes.pdf .
  20. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. 23(7), 1381–1389 (2006). [CrossRef]
  21. M. M. Mazumder, D. Q. Chowdhury, S. C. Hill, and R. K. Chang, “Optical resonances of a spherical dielectric microcavity: effects of perturbations,” in Optical Processes in Microspheres, R. K. Chang and A. J. Campillo, eds. (World Scientific, 1996), pp.209–256.
  22. R. Li, X. Han, H. Jiang, and K. F. Ren, “Debye series for light scattering by a multilayered sphere,” Appl. Opt. 45(6), 1260–1270 (2006). [CrossRef] [PubMed]
  23. L. G. Guimarães and H. M. Nussenzveig, “Uniform approximation to Mie resonances,” J. Mod. Opt. 41(3), 625–647 (1994).
  24. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonances,” J. Lightwave Technol. 17(4), 704–715 (1999). [CrossRef]
  25. J. A. Lock, “Excitation efficiency of a morphology-dependent resonance by a focused Gaussian beam,” J. Opt. Soc. Am. A 15(12), 2986–2994 (1998). [CrossRef]
  26. C. Grillet, S. N. Bian, E. C. Magi, and B. J. Eggleton, “Fiber taper coupling to chalcogenide microsphere modes,” Appl. Phys. Lett. 92(17), 171109 (2008). [CrossRef]
  27. E. E. M. Khaled, S. C. Hill, P. W. Barber, and D. Q. Chowdhury, “Near-resonance excitation of dielectric spheres with plane waves and off-axis Gaussian beams,” Appl. Opt. 31(9), 1166–1169 (1992). [CrossRef] [PubMed]
  28. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20(7), 654–656 (1995). [CrossRef] [PubMed]
  29. A. Serpengüzel, S. Arnold, G. Griffel, and J. A. Lock, “Enhanced coupling to microsphere resonances with optical fibers,” J. Opt. Soc. Am. B 14(4), 790–795 (1997). [CrossRef]
  30. Corning OptiFocus Collimated Lensed Fiber, Product Information. http://www.corning.com/docs/specialtymaterials/pisheets/pi101.pdf .
  31. G. Adamovsky, S. Wrbanek, B. Floyd, and M. Crotty, “Polarization dependent coupling of whispering gallery modes in microspheres,” Proc. SPIE 7750, 77500Q (2010).
  32. L. G. Cohen, W. L. Mammel, C. Lin, and W. G. French, “Propagation characteristics of double-mode fibers,” Bell Syst. Tech. J. 59(6), 1061–1072 (1980).
  33. K.-I. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. QE-17(6), 1057–1063 (1981).
  34. K. Iizuka, Elements of Photonics, v.2, (Wiley, 2002), Chapter 11.3, Field Distribution Inside Optical Fibers, pp. 730-739.
  35. A. Yu. Savchenko and B. Ya. Zel’dovich, “Wave propagation in a guiding structure: one step beyond the paraxial approximation,” J. Opt. Soc. Am. B 13(2), 273–281 (1996).
  36. N. D. Kundikova, “Manifestation of spin-orbital interaction of a photon,” Laser Phys. 20(2), 325–333 (2010).
  37. A. V. Dooghin, N. D. Kundikova, V. S. Liberman, and B. Ya. Zel’dovich, “Optical Magnus effect,” Phys. Rev. A 45(11), 8204–8208 (1992).
  38. V. V. Butkovskaya, A. V. Volyar, and T. A. Fadeeva, “Vortex optical Magnus effect in multimode fibers,” Tech. Phys. Lett. 23(8), 649–650 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited