OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2324–2330

Terahertz imaging employing graphene modulator arrays

Berardi Sensale-Rodriguez, Subrina Rafique, Rusen Yan, Mingda Zhu, Vladimir Protasenko, Debdeep Jena, Lei Liu, and Huili Grace Xing  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2324-2330 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we propose and experimentally demonstrate arrays of graphene electro-absorption modulators as electrically reconfigurable patterns for terahertz cameras. The active element of these modulators consists of only single-atom-thick graphene, achieving a modulation of the THz wave reflectance > 50% with a potential modulation depth approaching 100%. Although the prototype presented here only contains 4x4 pixels, it reveals the possibility of developing reliable low-cost video-rate THz imaging systems employing single detector.

© 2013 OSA

OCIS Codes
(230.4110) Optical devices : Modulators
(160.4236) Materials : Nanomaterials
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

Original Manuscript: November 19, 2012
Revised Manuscript: January 13, 2013
Manuscript Accepted: January 14, 2013
Published: January 23, 2013

Berardi Sensale-Rodriguez, Subrina Rafique, Rusen Yan, Mingda Zhu, Vladimir Protasenko, Debdeep Jena, Lei Liu, and Huili Grace Xing, "Terahertz imaging employing graphene modulator arrays," Opt. Express 21, 2324-2330 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007). [CrossRef]
  2. W. L. Chan, J. Deibel, and D. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70(8), 1325–1379 (2007). [CrossRef]
  3. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005). [CrossRef]
  4. H.-B. Liu, H. Zhong, N. Karpowicz, Y. Chen, and X.-C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Applications,” Proc. IEEE95(8), 1514–1527 (2007). [CrossRef]
  5. J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Commun.281(4), 527–532 (2008). [CrossRef]
  6. J. L. Tomaino, A. D. Jameson, J. W. Kevek, M. J. Paul, A. M. van der Zande, R. A. Barton, P. L. McEuen, E. D. Minot, and Y.-S. Lee, “Terahertz imaging and spectroscopy of large-area single-layer graphene,” Opt. Express19(1), 141–146 (2011). [CrossRef] [PubMed]
  7. J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett.12(10), 5074–5081 (2012). [CrossRef] [PubMed]
  8. A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol.47(7), R67–R84 (2002). [CrossRef] [PubMed]
  9. S. Nakajima, H. Hoshina, M. Yamashita, C. Otani, and N. Miyoshi, “Terahertz imaging diagnostics of cancer tissues with a chemometrics technique,” Appl. Phys. Lett.90(4), 041102 (2007). [CrossRef]
  10. Z. Jiang and X.-C. Zhang, “Terahertz imaging via electrooptic effect,” IEEE Trans. Microw. Theory Tech.47(12), 2644–2650 (1999). [CrossRef]
  11. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett.20(16), 1716–1718 (1995). [CrossRef] [PubMed]
  12. D. Zimdars, “High speed terahertz reflection imaging,” Proc. SPIE5692, 255–259 (2005). [CrossRef]
  13. J. Xu and X.-C. Zhang, “Terahertz wave reciprocal imaging,” Appl. Phys. Lett.88(15), 151107 (2006). [CrossRef]
  14. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett.93(12), 121105 (2008). [CrossRef]
  15. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett.94(21), 213511 (2009). [CrossRef]
  16. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett.99, 113104 (2011). [CrossRef]
  17. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat Commun3, 780 (2012). [CrossRef] [PubMed]
  18. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators,” Nano Lett.12(9), 4518–4522 (2012). [CrossRef] [PubMed]
  19. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater.11(11), 936–941 (2012). [CrossRef] [PubMed]
  20. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009). [CrossRef] [PubMed]
  21. L. Liu, J. L. Hesler, R. M. Weikle, T. Wang, P. Fay, and H. G. Xing, “A 570-630 GHz frequency domain spectroscopy system based on a broadband quasi-optical Schottky diode detector,” Int. J. High Speed Electron. Syst.20, 629–638 (2011). [CrossRef]
  22. L. Liu, J. L. Hesler, H. Xu, A. W. Lichtenberger, and R. M. Weikle, “A broadband quasi-optical terahertz detector using a zero bias Schottky diode,” IEEE Microw. Wireless Compon. Lett.20(9), 504–506 (2010). [CrossRef]
  23. D. B. M. Klaassen, “A unified mobility model for device simulation – I. Model equations and concentration dependence,” Solid-State Electron.35(7), 953–959 (1992). [CrossRef]
  24. N. M. R. Peres and T. Stauber, “Transport in a clean graphene sheet at finite temperature and frequency,” Int. J. Mod. Phys. B22(16), 2529–2536 (2008). [CrossRef]
  25. R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, “A new class of electrically tunable metamaterial terahertz modulators,” Opt. Express20(27), 28664–28671 (2012). [CrossRef] [PubMed]
  26. B. Sensale-Rodriguez, R. Yan, M. Zhu, D. Jena, L. Liu, and H. G. Xing, “Efficient terahertz electro-absorption modulation employing graphene plasmonic structures,” Appl. Phys. Lett.101(26), 261115 (2012). [CrossRef]
  27. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6(10), 630–634 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited