OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2369–2377

Optimization of an optical wireless nanolink using directive nanoantennas

Diego M. Solís, José M. Taboada, Fernando Obelleiro, and Luis Landesa  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2369-2377 (2013)
http://dx.doi.org/10.1364/OE.21.002369


View Full Text Article

Enhanced HTML    Acrobat PDF (1817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical connects will become a key point in the next generation of integrated circuits, namely the upcoming nanoscale optical chips. In this context, nano-optical wireless links using nanoantennas have been presented as a promising alternative to regular plasmonic waveguide links, whose main limitation is the range propagation due to the metal absorption losses. In this paper we present the complete design of a high-capability wireless nanolink using matched directive nanoantennas. It will be shown how the use of directive nanoantennas clearly enhances the capability of the link, improving its behavior with respect to non-directive nanoantennas and largely outperforming regular plasmonic waveguide connects.

© 2013 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics

ToC Category:
Integrated Optics

History
Original Manuscript: December 20, 2012
Manuscript Accepted: January 4, 2013
Published: January 23, 2013

Citation
Diego M. Solís, José M. Taboada, Fernando Obelleiro, and Luis Landesa, "Optimization of an optical wireless nanolink using directive nanoantennas," Opt. Express 21, 2369-2377 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-2369


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13, 6645–6650 (2005). [CrossRef] [PubMed]
  2. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30, 3359–3361 (2005). [CrossRef]
  3. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005). [CrossRef]
  4. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73, 035407 (2006). [CrossRef]
  5. G. Veronis, Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, “Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale,” Chin. Opt. Lett.7, 302–308 (2009). [CrossRef]
  6. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett.104, 213902 (2010). [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  8. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004). [CrossRef]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1608 (2005). [CrossRef] [PubMed]
  10. L. Novotny and N. F. van Hulst, “Antennas for light,” Nat. Photon.5, 83–90 (2011). [CrossRef]
  11. H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical yagi-uda antenna,” New J. Phys.9, 207 (2007). [CrossRef]
  12. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical yagi-uda antenna,” Nat. Photon.4, 312–315 (2010). [CrossRef]
  13. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  14. M. Klemm, “Directional plasmonic nanoantennas for wireless links at the nanoscale,” in Proceedings of Antennas and Propagation Conference, (Loughborough, 2011).
  15. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett.9, 1897–1902 (2009). [CrossRef] [PubMed]
  16. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982). [CrossRef]
  17. M. G. Araújo, D. M. Solís, J. Rivero, J. M. Taboada, F. Obelleiro, and L. Landesa, “Design of optical nanoantennas with the surface integral equation method of moments,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications, (Cape Town, 2012).
  18. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, MA, 1989).
  19. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley & Sons, New York, 1982).
  20. Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, New York, 2008).
  21. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: Molding, printing, and other techniques,” Chem. Rev.105, 1171–1196 (2005). [CrossRef] [PubMed]
  22. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method of moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011). [CrossRef]
  23. M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012). [CrossRef] [PubMed]
  24. L. Landesa, M. G. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express20, 17237–17249 (2012). [CrossRef]
  25. S. M. Rao and D. R. Wilton, “E-field, h-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics10, 407–421 (1990). [CrossRef]
  26. P. Yla-Oijala, M. Taskinen, and S. Jarvenpaa, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci.40, RS6002 (2005). [CrossRef]
  27. P. Yla-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag.53, 1168–1173 (2005). [CrossRef]
  28. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3d simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009). [CrossRef]
  29. J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag.45, 1488–1493 (1997). [CrossRef]
  30. O. Ergul and L. Gurel, “A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag.57, 1740–1750 (2009). [CrossRef]
  31. J. Taboada, M. Araújo, J. Bértolo, L. Landesa, F. Obelleiro, and J. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” Prog. Electromagn. Res.105, 15–20 (2010). [CrossRef]
  32. J. Taboada, M. Araújo, F. Obelleiro, J. Rodríguez, and L. Landesa, “MLFMA-FFT parallel algorithm for the solution of extremely large problems in electromagnetics,” Proceedings of the IEEEPP(99), 1–14 (2013).
  33. M. G. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett.37, 416–418 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited