OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2378–2392

Analysis of Fabry-Perot optical micro-cavities based on coating-free all-Silicon cylindrical Bragg reflectors

Maurine Malak, Noha Gaber, Frédéric Marty, Nicolas Pavy, Elodie Richalot, and Tarik Bourouina  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2378-2392 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2790 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the behavior of Fabry-Perot micro-optical resonators based on cylindrical reflectors, optionally combined with cylindrical lenses. The core of the resonator architecture incorporates coating-free, all-silicon, Bragg reflectors of cylindrical shape. The combined effect of high reflectance and light confinement produced by the reflectors curvature allows substantial reduction of the energy loss. The proposed resonator uses curved Bragg reflectors consisting of a stack of silicon-air wall pairs constructed by micromachining. Quality factor Q ~1000 was achieved on rather large cavity length L = 210 microns, which is mainly intended to lab-on-chip analytical experiments, where enough space is required to introduce the analyte inside the resonator. We report on the behavioral analysis of such resonators through analytical modeling along with numerical simulations supported by experimental results. We demonstrate selective excitation of pure longitudinal modes, taking advantage of a proper control of mode matching involved in the process of coupling light from an optical fiber to the resonator. For the sake of comparison, insight on the behavior of Fabry-Perot cavity incorporating a Fiber-Rod-Lens is confirmed by similar numerical simulations.

© 2013 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.1480) Optical devices : Bragg reflectors
(230.3990) Optical devices : Micro-optical devices
(140.3948) Lasers and laser optics : Microcavity devices
(080.4228) Geometric optics : Nonspherical mirror surfaces

ToC Category:
Integrated Optics

Original Manuscript: September 28, 2012
Revised Manuscript: December 13, 2012
Manuscript Accepted: December 20, 2012
Published: January 24, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Maurine Malak, Noha Gaber, Frédéric Marty, Nicolas Pavy, Elodie Richalot, and Tarik Bourouina, "Analysis of Fabry-Perot optical micro-cavities based on coating-free all-Silicon cylindrical Bragg reflectors," Opt. Express 21, 2378-2392 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Zener, “Internal friction in solids. Pt. II: general theory of thermoelastic internal friction,” Phys. Rev.53(1), 90–99 (1938). [CrossRef]
  2. D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche, “Measurements of the mechanical Q of single-crystal silicon at low temperatures,” J. Low Temp. Phys.30(5-6), 621–629 (1978). [CrossRef]
  3. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104(16), 163903 (2010). [CrossRef] [PubMed]
  4. G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity19(5), 897–917 (2002). [CrossRef]
  5. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature444(7115), 75–78 (2006). [CrossRef] [PubMed]
  6. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature444(7115), 71–74 (2006). [CrossRef] [PubMed]
  7. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science298(5597), 1372–1377 (2002). [CrossRef] [PubMed]
  8. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  10. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett.23(4), 247–249 (1998). [CrossRef] [PubMed]
  11. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express14(9), 4176–4182 (2006). [CrossRef] [PubMed]
  12. D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, and C. Bustamante, “Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies,” Nature437(7056), 231–234 (2005). [CrossRef] [PubMed]
  13. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Perot cavity,” Appl. Phys. Lett.89(20), 203901 (2006). [CrossRef]
  14. S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, and D. Romanini, “Looking into the volcano with a mid-IR DFB diode laser and cavity enhanced absorption spectroscopy,” Opt. Express14(23), 11442–11452 (2006). [CrossRef] [PubMed]
  15. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express16(14), 10178–10188 (2008). [CrossRef] [PubMed]
  16. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “In-plane microelectromechanical resonator with integrated Fabry–Perot cavity,” Appl. Phys. Lett.92(8), 081101 (2008). [CrossRef]
  17. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett.32(5), 533–535 (2007). [CrossRef] [PubMed]
  18. B. Saadany, M. Malak, M. Kubota, F. Marty, Y. Mita, D. Khalil, and T. Bourouina, “Free-space tunable and drop optical filters using vertical Bragg mirrors on silicon,” J. Sel. Top. Quantum Electron.12(6), 1480–1488 (2006). [CrossRef]
  19. R. St-Gelais, J. Masson, and Y.-A. Peter, “All-silicon integrated Fabry-Perot cavity for volume refractive index measurement in microfuidic systems,” Appl. Phys. Lett.94(24), 243905 (2009). [CrossRef]
  20. A. Lipson and E. M. Yeatman, “A 1-D photonic band gap tunable optical filter in (110) silicon,” J. Microelectromech. Syst.16(3), 521–527 (2007). [CrossRef]
  21. F. Marty, L. Rousseau, B. Saadany, B. Mercier, O. Français, Y. Mita, and T. Bourouina, “Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three dimensional micro- and nanostructures,” Microelectron. J.36(7), 673–677 (2005). [CrossRef]
  22. A. Yariv, Quantum Electronics (Wiley, New York, USA 1989).
  23. M. Malak, N. Pavy, F. Marty, Y.-A. Peter, A. Q. Liu, and T. Bourouina, “Micromachined Fabry–Perot resonator combining submillimeter cavity length and high quality factor,” Appl. Phys. Lett.98(21), 211113 (2011). [CrossRef]
  24. M. Malak, F. Marty, N. Pavy, Y.-A. Peter, A. Q. Liu, and T. Bourouina, “Cylindrical surfaces enable wavelength-selective extinction and sub-0.2 nm linewidth in 250 μm-gap silicon Fabry–Perot cavities,” J. Microelectromech. Syst.21(1), 171–180 (2012). [CrossRef]
  25. M. Malak, A.-F. Obaton, F. Marty, N. Pavy, S. Didelon, P. Basset, and T. Bourouina, “Analysis of micromachined Fabry-Perot cavities using phase-sensitive optical low coherence interferometry: insight on dimensional measurements of dielectric layers,” AIP Adv2(2), 022143 (2012). [CrossRef]
  26. T. Verdeyen, Laser Electronics (Prentice Hall, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited