OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2480–2490

Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique

K. P. Nayak and K. Hakuta  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2480-2490 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3560 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that thousands of periodic nano-craters are fabricated on a subwavelength-diameter tapered optical fiber, an optical nanofiber, by irradiating with just a single femtosecond laser pulse. A key aspect of the fabrication is that the nanofiber itself acts as a cylindrical lens and focuses the femtosecond laser beam on its shadow surface. We also demonstrate that the periodic nano-crater array on the nanofiber shows polarization dependent fiber Bragg grating (FBG) characteristics. Such FBG structures on the nanofiber may act as a 1-D photonic crystal due to the strong transverse and longitudinal confinement of the field.

© 2013 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(140.3945) Lasers and laser optics : Microcavities
(060.4005) Fiber optics and optical communications : Microstructured fibers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(060.5565) Fiber optics and optical communications : Quantum communications
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Photonic Crystals

Original Manuscript: October 22, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: January 10, 2013
Published: January 25, 2013

K. P. Nayak and K. Hakuta, "Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique," Opt. Express 21, 2480-2490 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence,” Opt. Express15, 5431–5438 (2007). [CrossRef] [PubMed]
  2. K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New J. Phys.10, 053003 (2008). [CrossRef]
  3. R. Yalla, K. P. Nayak, and K. Hakuta, “Fluorescence photon measurements from single quantum dots on an optical nanofiber,” Opt. Express20, 2932–2941 (2012). [CrossRef] [PubMed]
  4. F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72, 032509 (2005). [CrossRef]
  5. R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109, 063602 (2012). [CrossRef] [PubMed]
  6. F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73, 013819 (2006). [CrossRef]
  7. F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70, 063403 (2004). [CrossRef]
  8. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett.104, 203603 (2010). [CrossRef] [PubMed]
  9. A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett.109, 033603 (2012). [CrossRef] [PubMed]
  10. F. L. Kien, K. P. Nayak, and K. Hakuta, “Nanofibers with Bragg gratings from equidistant holes,” J. Modern Opt.59, 274–286 (2012). [CrossRef]
  11. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390, 143–145 (1997). [CrossRef]
  12. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459, 550–555 (2009). [CrossRef] [PubMed]
  13. F. L. Kien and K. Hakuta, “Cavity-enhanced channeling of emission from an atom into a nanofiber,” Phys. Rev. A80, 053826 (2009). [CrossRef]
  14. H. J. Kimble, “The quantum internet,” Nature453, 1023–1030 (2008). [CrossRef] [PubMed]
  15. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun.285, 4641–4647 (2012). [CrossRef]
  16. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol.15, 1263–1276(1997). [CrossRef]
  17. C. R. Giles, “Lightwave applications of fiber Bragg gratings,” J. Lightwave Technol.15, 1391–1404 (1997). [CrossRef]
  18. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15, 1442–1463 (1997). [CrossRef]
  19. Zhi-Gang Zang and Wen-xuan Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109, 103106 (2011). [CrossRef]
  20. Zhi-Gang Zang and Yu-Jun Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” Modern J. Opt.59, 161–165 (2012). [CrossRef]
  21. Zhi-Gang Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285, 521–526 (2012). [CrossRef]
  22. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express19, 14040–14050 (2011). [CrossRef] [PubMed]
  23. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett.36, 3115–3117 (2011). [CrossRef] [PubMed]
  24. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express19, 15621–15626 (2011). [CrossRef] [PubMed]
  25. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem.2008, 416251 (2008). [CrossRef]
  26. D. Grobnic, S. J. Mihailov, H. Ding, and C. W. Smelser, “Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation,” IEEE Photon. Tech. Lett.18, 160–162 (2006). [CrossRef]
  27. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35, 1007–1009 (2010). [CrossRef] [PubMed]
  28. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16, 19169–19178 (2008). [CrossRef]
  29. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publication Inc., 1981) pp 297–328.
  30. F. L. Kien and K. Hakuta, “Microtraps for atoms outside a fiber illuminated perpendicular to its axis: Numerical results,” Phys. Rev. A80, 013415 (2009). [CrossRef]
  31. C. W. Smelser, S. J. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express13, 5377–5386 (2005). [CrossRef] [PubMed]
  32. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15, 1277–1294 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited