OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 2491–2499

Magnetic field interaction with guided light for detection of an active gaseous medium within an optical fiber

Florian V. Englich, Michal Grabka, David G. Lancaster, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 2491-2499 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel fiber-optic sensing architecture for the detection of paramagnetic gases. By interacting a modulated magnetic field with guided light within a microstructured optical fiber, it is possible to exploit Faraday Rotation Spectroscopy (FRS) within unprecedentedly small sample volumes. This approach, which utilizes magnetic circular birefringence and magnetic circular dichroism effects, is applied to a photonic bandgap fiber to detect molecular oxygen and operates at a wavelength of 762.309 nm. The optical fiber sensor has a 4.2 nL detection volume and 14.8 cm long sensing region. The observed FRS spectra are compared with a theoretical model that provides a first understanding of guided-mode FRS signals. This FRS guided-wave sensor offers the prospect of new compact sensing schemes.

© 2013 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.2240) Optical devices : Faraday effect
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:

Original Manuscript: November 7, 2012
Revised Manuscript: January 15, 2013
Manuscript Accepted: January 16, 2013
Published: January 25, 2013

Florian V. Englich, Michal Grabka, David G. Lancaster, and Tanya M. Monro, "Magnetic field interaction with guided light for detection of an active gaseous medium within an optical fiber," Opt. Express 21, 2491-2499 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express12(17), 4080–4087 (2004). [CrossRef] [PubMed]
  2. E. Austin, A. van Brakel, M. N. Petrovich, and D. J. Richardson, “Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell,” Sens. Actuators B Chem.139(1), 30–34 (2009). [CrossRef]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature434(7032), 488–491 (2005). [CrossRef] [PubMed]
  4. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, and H.-P. Look, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys.117(23), 10444–10447 (2002). [CrossRef]
  5. H. Waechter, K. Bescherer, C. J. Dürr, R. D. Oleschuk, and H. P. Loock, “405 nm absorption detection in nanoliter volumes,” Anal. Chem.81(21), 9048–9054 (2009). [CrossRef] [PubMed]
  6. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express18(6), 5407–5412 (2010). [CrossRef] [PubMed]
  7. H. C. Y. Yu, M. A. van Eijkelenborg, S. G. Leon-Saval, A. Argyros, and G. W. Barton, “Enhanced magneto-optical effect in cobalt nanoparticle-doped optical fiber,” Appl. Opt.47(35), 6497–6501 (2008). [CrossRef] [PubMed]
  8. M. A. Schmidt, L. Wondraczek, H. W. Lee, N. Granzow, N. Da, and P. St J Russell, “Complex Faraday rotation in microstructured magneto-optical fiber waveguides,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2681–2688 (2011). [CrossRef] [PubMed]
  9. G. Litfin, C. R. Pollock, J. R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys.72(12), 6602–6605 (1980). [CrossRef]
  10. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 microm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12587–12592 (2009). [CrossRef] [PubMed]
  11. S. So, E. Jeng, and G. Wysocki, “VCSEL based Faraday rotation spectroscopy with a modulated and static magnetic field for trace molecular oxygen detection,” Appl. Phys. B102(2), 279–291 (2011). [CrossRef]
  12. W. Zhao, G. Wysocki, W. Chen, E. Fertein, D. Le Coq, D. Petitprez, and W. Zhang, “Sensitive and selective detection of OH radicals using Faraday rotation spectroscopy at 2.8 µm,” Opt. Express19(3), 2493–2501 (2011). [CrossRef] [PubMed]
  13. D. J. Robichaud, J. T. Hodges, P. Maslowski, L. Y. Yeung, M. Okumura, C. E. Miller, and L. R. Brown, “High-accuracy transition frequencies for the O2 A-band,” J. Mol. Spectrosc.251(1-2), 27–37 (2008). [CrossRef]
  14. D. Long, D. Havey, M. Okumura, C. Miller, and J. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf.111(14), 2021–2036 (2010). [CrossRef]
  15. H. Adams, D. Reinert, P. Kalkert, and W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B34(4), 179–185 (1984). [CrossRef]
  16. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett.26(8), 488–490 (2001). [CrossRef] [PubMed]
  17. W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys.40(7), 2760–2765 (1969). [CrossRef]
  18. T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Highly birefringent microstructured fibers for sensing applications,” Proc. SPIE7141, 714108, 714108-10 (2008). [CrossRef]
  19. D. J. Robichaud, J. T. Hodges, L. R. Brown, D. Lisak, P. Maslowski, L. Y. Yeung, M. Okumura, and C. E. Miller, “Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy,” J. Mol. Spectrosc.248(1), 1–13 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited