OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23007–23020

Sensing with magnetic dipolar resonances in semiconductor nanospheres

Braulio García-Cámara, Raquel Gómez-Medina, Juan José Sáenz, and Borja Sepúlveda  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23007-23020 (2013)
http://dx.doi.org/10.1364/OE.21.023007


View Full Text Article

Enhanced HTML    Acrobat PDF (3240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we propose two novel sensing principles of detection that exploit the magnetic dipolar Mie resonance in high-refractive-index dielectric nanospheres. In particular, we theoretically investigate the spectral evolution of the extinction and scattering cross sections of these nanospheres as a function of the refractive index of the external medium (next). Unlike resonances in plasmonic nanospheres, the spectral position of magnetic resonances in high-refractive-index nanospheres barely shifts as next changes. Nevertheless, there is a drastic reduction in the extinction cross section of the nanospheres when next increases, especially in the magnetic dipolar spectral region, which is accompanied with remarkable variations in the radiation patterns. Thanks to these changes, we propose two new sensing parameters, which are based on the detection of: i) the intensity variations in the transmitted or backscattered radiation by the dielectric nanospheres at the magnetic dipole resonant frequency, and ii) the changes in the radiation pattern at the frequency that satisfies Kerker’s condition of near-zero forward radiation. To optimize the sensitivity, we consider several semiconductor materials and particles sizes.

© 2013 Optical Society of America

OCIS Codes
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: April 17, 2013
Revised Manuscript: June 26, 2013
Manuscript Accepted: July 31, 2013
Published: September 23, 2013

Citation
Braulio García-Cámara, Raquel Gómez-Medina, Juan José Sáenz, and Borja Sepúlveda, "Sensing with magnetic dipolar resonances in semiconductor nanospheres," Opt. Express 21, 23007-23020 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23007


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  2. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature433(7023), 292–294 (2005). [CrossRef] [PubMed]
  3. G. T. Reed, Silicon Photonics: The State of Art (John Wiley & Sons, 2008).
  4. K. Zinoviev, L. G. Carrascosa, J. Sánchez del Río, B. Sepúlveda, C. Domínguez, and L. M. Lechuga, “Silicon photonic biosensors for lab-on-a-chip applications,” Adv. Opt. Technol.2008, 383927 (2008). [CrossRef]
  5. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett.34(23), 3598–3600 (2009). [CrossRef] [PubMed]
  6. M. Ibisate, D. Golmayo, and C. López, “Silicon direct opals,” Adv. Mater.21(28), 2899–2902 (2009). [CrossRef]
  7. N. Sherwood-Droz, A. Gondarenko, and M. Lipson, “Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express18(6), 5785–5790 (2010). [CrossRef] [PubMed]
  8. A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express18(4), 3582–3591 (2010). [CrossRef] [PubMed]
  9. B. García-Cámara, Communication Architectures for Systems on Chip (Taylor and Francis, 2011), pp.249–322.
  10. M. A. Pannicia, “Perfect marriage: optics and silicon,” Optik Photonik6, 34–38 (2011).
  11. L. Shi, T. U. Tuzer, R. Fenollosa, and F. Meseguer, “A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities,” Adv. Mater.24(44), 5934–5938 (2012). [CrossRef] [PubMed]
  12. J. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37(2), 256–258 (2012). [CrossRef] [PubMed]
  13. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19(6), 4815–4826 (2011). [CrossRef] [PubMed]
  14. M. Nieto-Vesperinas, R. Gómez-Medina, and J. J. Sáenz, “Angle-suppressed scattering and optical forces on submicrometer dielectric particles,” J. Opt. Soc. Am. A28(1), 54–60 (2011). [CrossRef] [PubMed]
  15. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces,” J. Nanophoton.5(1), 053512 (2011). [CrossRef]
  16. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci Rep2, 492 (2012). [CrossRef] [PubMed]
  17. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of an individual magnetic split-ring resonators,” Nat. Photonics2(10), 614–617 (2008). [CrossRef]
  18. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, L. S. Froufe-Pérez, F. González, F. Moreno, M. Nieto-Vesperinas, and J. J. Sáenz, “Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering Anisotropy,” Photon. Nanostruct.: Fundam. Appl.10(4), 345–352 (2012). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solid (Academic, 1985).
  20. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett.102(13), 133901 (2009). [CrossRef] [PubMed]
  21. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012). [CrossRef] [PubMed]
  22. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science315(5808), 47–49 (2007). [CrossRef] [PubMed]
  23. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  24. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat Commun2, 176 (2011). [CrossRef] [PubMed]
  25. B. García-Cámara, F. Moreno, F. González, J. M. Saiz, and G. Videen, “Light scattering resonances in small particles with electric and magnetic properties,” J. Opt. Soc. Am. A25(2), 327–334 (2008). [CrossRef] [PubMed]
  26. B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Nanoparticles with unconventional scattering properties: size effects,” Opt. Commun.283(3), 490–496 (2010). [CrossRef]
  27. B. García-Cámara, F. Moreno, F. González, and O. J. F. Martin, “Light scattering by an array of electric and magnetic nanoparticles,” Opt. Express18(10), 10001–10015 (2010). [CrossRef] [PubMed]
  28. B. García-Cámara, J. M. Saiz, F. González, and F. Moreno, “Distance limit of the directionality conditions for the scattering of nanoparticles,” Metamaterials (Amst.)4(1), 15–23 (2010). [CrossRef]
  29. M. Kerker, D. S. Wang, and L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am.73(6), 765–767 (1983). [CrossRef]
  30. J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nat Commun3, 1171 (2012). [CrossRef] [PubMed]
  31. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett.13(4), 1806–1809 (2013). [PubMed]
  32. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013). [CrossRef] [PubMed]
  33. B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga, and M. Käll, “Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates,” Opt. Express17(3), 2015–2023 (2009). [CrossRef] [PubMed]
  34. C. Huang, K. Bonroy, G. Reekman, K. Verstreken, L. Lagae, and G. Borghs, “An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction,” Microelectron. Eng.86(12), 2437–2441 (2009). [CrossRef]
  35. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009). [CrossRef]
  36. M. A. Otte, M.-C. Estévez, D. Regatos, L. M. Lechuga, and B. Sepúlveda, “Guiding light in monolayers of sparse and random plasmonic meta-atoms,” ACS Nano5(11), 9179–9186 (2011). [CrossRef] [PubMed]
  37. K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng, and W.-T. Lin, “Improved performance of aminopropylsilatrane over aminopropyltriehoxysilane as a linker for nanoparticle-based plasmon resonance sensors,” Sens. Act. B163(1), 207–215 (2012). [CrossRef]
  38. L. Guyot, A.-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express19(10), 9962–9967 (2011). [CrossRef] [PubMed]
  39. M. Février, P. Gogol, G. Barbillon, A. Aassime, R. Mégy, B. Bartenlian, J.-M. Lourtioz, and B. Dagens, “Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors,” Opt. Express20(16), 17402–17410 (2012). [CrossRef] [PubMed]
  40. B. García-Cámara, F. González, F. Moreno, R. Gómez-Medina, J. J. Sáenz, and M. Nieto-Vesperinas, Smart Nanoparticles Technology, (InTech, 2012), Chap. 13.
  41. C. F. Bohren and D. R. Huffman, eds., Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  42. P. N. Prasad, Nanophotonics (John Wiley & Sons, 2004).
  43. A. Alù and N. Engheta, “How does zero-forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?” J. Nanophoton.4(1), 041590 (2010). [CrossRef]
  44. B. García-Cámara, F. González, F. Moreno, and J. M. Saiz, “Exception for the zero-forward-scattering theory,” J. Opt. Soc. Am. A25(11), 2875–2878 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited