OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23021–23029

Crossed fiber optic Bessel beams for curvilinear optofluidic transport of dielectric particles

Jongki Kim, Sungrae Lee, Yoonseob Jeong, Jun-Ki Kim, Yongmin Jung, Fabrice Merenda, Renè-Paul Salathè, Jeon-Soo Shin, and Kyunghwan Oh  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23021-23029 (2013)
http://dx.doi.org/10.1364/OE.21.023021


View Full Text Article

Enhanced HTML    Acrobat PDF (17376 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Due to its unique non-diffracting and self-reconstructing nature, Bessel beams have been successfully adopted to trap multiple particles along the beam’s axial direction. However, prior bulk-optic based Bessel beams have a fundamental form-factor limitation for in situ, in-vitro, and in-vivo applications. Here we present a novel implementation of Fourier optics along a single strand of hybrid optical fiber in a monolithic manner that can generate pseudo Bessel beam arrays in two-dimensional space. We successfully demonstrate unique optofluidic transport of the trapped dielectric particles along a curvilinear optical route by multiplexing the fiber optic pseudo Bessel beams. The proposed technique can form a new building block to realize reconfigurable optofluidic transportation of particulates that can break the limitations of both prior bulk-optic Bessel beam generation techniques and conventional microfluidic channels.

© 2013 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3300) Lasers and laser optics : Laser beam shaping
(230.3990) Optical devices : Micro-optical devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: May 8, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: September 15, 2013
Published: September 23, 2013

Citation
Jongki Kim, Sungrae Lee, Yoonseob Jeong, Jun-Ki Kim, Yongmin Jung, Fabrice Merenda, Renè-Paul Salathè, Jeon-Soo Shin, and Kyunghwan Oh, "Crossed fiber optic Bessel beams for curvilinear optofluidic transport of dielectric particles," Opt. Express 21, 23021-23029 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-beam Gradient Force Optical Trap for Dielectric Particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical Trapping and Manipulation Of Single Cells using Infrared Laser Beams,” Nature330(6150), 769–771 (1987). [CrossRef] [PubMed]
  3. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical Manipulation of Nanoparticles: a Review,” J. Nanophotonics2(1), 021875 (2008). [CrossRef]
  4. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, 2006), Chap. 3.
  5. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with Optical Tweezers,” Biophys. J.72(3), 1335–1346 (1997). [CrossRef] [PubMed]
  6. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun.207(1-6), 169–175 (2002). [CrossRef]
  7. J. Rohner, J.-M. Fournier, P. Jacquot, F. Merenda, and R.-P. Salathè, “Multiple Optical Trapping in High Gradient Interference Fringes,” Proc. SPIE6326, 632606 (2006). [CrossRef]
  8. F. Merenda, J. Rohner, J.-M. Fournier, and R.-P. Salathé, “Miniaturized High-NA Focusing-mirror Multiple Optical Tweezers,” Opt. Express15(10), 6075–6086 (2007). [CrossRef] [PubMed]
  9. J. E. Molloy and M. J. Padgett, “Light, Action: Optical Tweezers,” Contemp. Phys.43(4), 241–258 (2002). [CrossRef]
  10. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical Micromanipulation using a Bessel Light Beam,” Opt. Commun.197(4-6), 239–245 (2001). [CrossRef]
  11. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous Micromanipulation in Multiple Planes using a Self-reconstructing Light Beam,” Nature419(6903), 145–147 (2002). [CrossRef] [PubMed]
  12. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free Beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  13. J. McLeod, “The Axicon: a New Type of Optical Element,” J. Opt. Soc. Am.44(8), 592–597 (1954). [CrossRef]
  14. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A8(6), 932–942 (1991). [CrossRef]
  15. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically Mediated Particle Clearing using Airy Wavepackets,” Nat. Photonics2(11), 675–678 (2008). [CrossRef]
  16. J. Canning, “Diffraction-free Mode Generation and Propagation in Optical Waveguides,” Opt. Commun.207(1-6), 35–39 (2002). [CrossRef]
  17. J. Canning, E. Buckley, and K. Lyytikainen, “Propagation in Air by Field Superposition of Scattered Light within a Fresnel Fiber,” Opt. Lett.28(4), 230–232 (2003). [CrossRef] [PubMed]
  18. J. Canning, E. Buckley, and K. Lyytikainen, “Multiple Source Generation using Air-structured Optical Waveguides for Optical Field Shaping and Transformation within and Beyond the Waveguide,” Opt. Express11(4), 347–358 (2003). [CrossRef] [PubMed]
  19. J. Canning, Fresnel Optics Inside Optical Fibres, in Photonics Research Developments, (Nova Science Publishers, 2008) Chap 5.
  20. T. M. Squires and S. R. Quake, “Microfluidics: Fluid Physics at the Nanoliter Scale,” Rev. Mod. Phys.77(3), 977–1026 (2005). [CrossRef]
  21. Z. Wu, A. Q. Liu, and K. Hjort, “Microfluidics Continuous Particle / Cell Separation via Electroosmotic-flow-tuned Hydrodynamic Spreading,” J. Micromech. Microeng.17(10), 1992–1999 (2007). [CrossRef]
  22. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for Drug Development,” Adv. Drug Deliv. Rev.55(3), 349–377 (2003). [CrossRef] [PubMed]
  23. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered Fiber Optical Tweezers for Microscopic Particle Trapping: Fabrication and Application,” Opt. Express14(25), 12510–12516 (2006). [CrossRef] [PubMed]
  24. C. Liberale, P. Minzioni, F. Bragheri, F. D. Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized All-fibre Probe for Three-dimensional Optical Trapping and Manipulation,” Nat. Photonics1(12), 723–727 (2007). [CrossRef]
  25. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a Fiber-optical Light-Force Trap,” Opt. Lett.18(21), 1867–1869 (1993). [CrossRef] [PubMed]
  26. S. R. Lee, J. Kim, S. Lee, Y. Jung, J.-K. Kim, and K. Oh, “All-silica Fiber Bessel-like Beam Generator and Its Applications in Longitudinal Optical Trapping and Transport of Multiple Dielectric Particles,” Opt. Express18(24), 25299–25305 (2010). [CrossRef] [PubMed]
  27. J.-K. Kim, J. Kim, Y. Jung, W. Ha, Y.-S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact All-fiber Bessel Beam Generator Based on Hollow Optical Fiber Combined with a Hybrid Polymer Fiber Lens,” Opt. Lett.34(19), 2973–2975 (2009). [CrossRef] [PubMed]
  28. J. Kim, Y. Jeong, S. Lee, W. Ha, J.-S. Shin, and K. Oh, “Fourier Optics along a Hybrid Optical Fiber for Bessel-like Beam Generation and Its Applications in Multiple-particle Trapping,” Opt. Lett.37(4), 623–625 (2012). [CrossRef] [PubMed]
  29. K. Oh, S. Choi, Y. Jung, and J. W. Lee, “Novel Hollow Optical Fibers and Their Applications in Photonics Devices for Optical Communications,” J. Lightwave Technol.23(2), 524–532 (2005). [CrossRef]
  30. J. Kim, M. Han, S. Chang, J. W. Lee, and K. Oh, “Achievement of Large Spot Size and Long Collimation Length using UV Curable Self-assembled Polymer Lens on a Beam Expanding Core-less Silica Fiber,” IEEE Photon. Technol. Lett.16(11), 2499–2501 (2004). [CrossRef]
  31. K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards (Wiley, 2006) Chap. 4.
  32. H. E. Arabi, S. An, and K. Oh, “Fiber Optic Engine For Micro Projection Display,” Opt. Express18(5), 4655–4663 (2010). [CrossRef] [PubMed]
  33. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B20(7), 1568–1574 (2003). [CrossRef]
  34. M. Kawano, J. T. Blakely, R. Gordon, and D. Sinton, “Theory of dielectric micro-sphere dynamics in a dual-beam optical trap,” Opt. Express16(13), 9306–9317 (2008). [CrossRef] [PubMed]
  35. Y. Liu and M. Yu, “Multiple traps created with an inclined dual-fiber system,” Opt. Express17(24), 21680–21690 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (3190 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited