OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23030–23035

Electrically driven green, olivine, and amber color nanopyramid light emitting diodes

Shih-Pang Chang, Jet-Rung Chang, Kuok-Pan Sou, Mei-Chun Liu, Yuh-Jen Cheng, Hao-Chung Kuo, and Chun-Yen Chang  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23030-23035 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and studies of electrically driven green, olivine, and amber color nanopyramid GaN light emitting diodes (LEDs). InGaN/GaN multiple quantum wells (MQWs) were grown on the nanopyramid semipolar facets. Compared with the commonly used (0001) c-plane MQWs, the semipolar facet has lower piezoelectric field, resulting in much faster radiative recombination efficiency. This is important for high In content MQWs. The measured internal quantum efficiencies for green, olivine, and amber color LED are 30%, 25%, and 21%, respectively. The radiative and non-radiative lifetime of the semipolar MQWs are also investigated.

© 2013 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: May 29, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: September 12, 2013
Published: September 23, 2013

Shih-Pang Chang, Jet-Rung Chang, Kuok-Pan Sou, Mei-Chun Liu, Yuh-Jen Cheng, Hao-Chung Kuo, and Chun-Yen Chang, "Electrically driven green, olivine, and amber color nanopyramid light emitting diodes," Opt. Express 21, 23030-23035 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wu, W. Walukiewicz, K. Yu, J. Ager, E. Haller, H. Lu, and W. Schaff, “Small band gap bowing in In1-xGaxN alloys,” Appl. Phys. Lett.80(25), 4741–4743 (2002). [CrossRef]
  2. P. T. Barletta, E. A. Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett.90(15), 151109 (2007). [CrossRef]
  3. D. Fuhrmann, C. Netzel, U. Rossow, A. Hangleiter, G. Ade, and P. Hinze, “Optimization scheme for the quantum efficiency of GaInN-based green-light-emitting diodes,” Appl. Phys. Lett.88(7), 071105 (2006). [CrossRef]
  4. Y.-L. Lai, C.-P. Liu, Y.-H. Lin, R.-M. Lin, D.-Y. Lyu, Z.-X. Peng, and T.-Y. Lin, “Effects of the material polarity on the green emission properties of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.89(15), 151906 (2006). [CrossRef]
  5. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B56(16), R10024 (1997). [CrossRef]
  6. N. Akopian, G. Bahir, D. Gershoni, M. D. Craven, J. S. Speck, and S. P. DenBaars, “Optical evidence for lack of polarization in (11-20) oriented GaN/(AlGa)N quantum structures,” Appl. Phys. Lett.86(20), 202104 (2005). [CrossRef]
  7. M. Ueda, K. Kojima, M. Funato, Y. Kawakami, Y. Narukawa, and T. Mukai, “Epitaxial growth and optical properties of semipolar (11-22) GaN and InGaN/GaN quantum wells on GaN bulk substrates,” Appl. Phys. Lett.89(21), 211907 (2006). [CrossRef]
  8. R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Appl. Phys. Lett.87(23), 231110 (2005). [CrossRef]
  9. K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. Phys. Condens. Matter13(32), 6961–6975 (2001). [CrossRef]
  10. C. Liu, A. Satka, L. K. Jagadamma, P. R. Edwards, D. Allsopp, R. W. Martin, P. Shields, J. Kovac, F. Uherek, and W. Wang, “Light emission from InGaN quantum wells grown on the facets of closely spaced GaN nano-pyramids formed by nano-imprinting,” Appl. Phys. Express2(12), 121002 (2009). [CrossRef]
  11. I. H. Wildeson, R. Colby, D. A. Ewoldt, Z. Liang, D. N. Zakharov, N. J. Zaluzec, R. E. García, E. A. Stach, and T. D. Sands, “III-nitride nanopyramid light emitting diodes grown by organometallic vapor phase epitaxy,” J. Appl. Phys.108(4), 044303 (2010). [CrossRef]
  12. T. Kim, J. Kim, M.-S. Yang, S. Lee, Y. Park, U.-I. Chung, and Y. Cho, “Highly efficient yellow photoluminescence from {11–22} InGaN multiquantum-well grown on nanoscale pyramid structure,” Appl. Phys. Lett.97(24), 241111 (2010). [CrossRef]
  13. H. Yu, L. K. Lee, T. Jung, and P. C. Ku, “Photoluminescence study of semipolar {10-11} InGaN/GaN multiple quantum wells grown by selective area epitaxy,” Appl. Phys. Lett.90(14), 141906 (2007). [CrossRef]
  14. Y.-H. Ko, J.-H. Kim, L.-H. Jin, S.-M. Ko, B.-J. Kwon, J. Kim, T. Kim, and Y.-H. Cho, “Electrically driven quantum dot/wire/well hybrid light-emitting diodes,” Adv. Mater.23(45), 5364–5369 (2011). [CrossRef] [PubMed]
  15. Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, Y. Narukawa, T. Mukai, and S. Fujita, “In inhomogeneity and emission characteristics of InGaN,” J. Phys. Condens. Matter13(32), 6993–7010 (2001). [CrossRef]
  16. Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, “S-shaped temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett.73(10), 1370–1372 (1998). [CrossRef]
  17. H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation,” J. Appl. Phys.88(3), 1525–1534 (2000). [CrossRef]
  18. A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys.95(9), 4670–4674 (2004). [CrossRef]
  19. Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, “Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer,” Appl. Phys. Lett.74(4), 558–560 (1999). [CrossRef]
  20. T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, and C. Wetzel, “Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells,” Appl. Phys. Lett.96(3), 031906 (2010). [CrossRef]
  21. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, “Blue temperature-induced shift and band-tail emission in InGaN-based light sources,” Appl. Phys. Lett.71(5), 569–571 (1997). [CrossRef]
  22. Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, “Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells,” Phys. Rev. B59(15), 10283–10288 (1999). [CrossRef]
  23. S.-P. Chang, Y.-C. Chen, J.-K. Huang, Y.-J. Cheng, J.-R. Chang, K.-P. Sou, Y.-T. Kang, H.-C. Yang, T.-C. Hsu, H.-C. Kuo, and C.-Y. Chang, “Electrically driven nanopyramid green light emitting diode,” Appl. Phys. Lett.100(6), 061106 (2012). [CrossRef]
  24. N. K. van der Laak, R. A. Oliver, M. J. Kappers, and C. J. Humphreys, “Role of gross well-width fluctuations in bright, green-emitting single InGaN/GaN quantum well structures,” Appl. Phys. Lett.90(12), 121911 (2007). [CrossRef]
  25. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze, “Suppression of nonradiative recombination by v-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency,” Phys. Rev. Lett.95(12), 127402 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited