OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23048–23057

Colorless monolithically integrated 120° downconverter

P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23048-23057 (2013)
http://dx.doi.org/10.1364/OE.21.023048


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We numerically demonstrate colorless reception of dense wavelength division multiplexed channels in the C-band for high-order QAM (16-64 QAM) signals on a 120° monolithically integrated downconverter, based on a 2x3 MMI with calibrated analog IQ recovery. It is shown that the proposed calibrated 120° downconverter can increase up to 80 the number of coincident channels in an efficient way, exhibiting good signal dynamic range and high fabrication yield. As this downconverter makes use of the minimum number of power outputs required for perfect recovery of IQ signals, it becomes an interesting alternative to conventional 90° based downconverters.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Integrated Optics

History
Original Manuscript: June 10, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: September 11, 2013
Published: September 23, 2013

Citation
P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández, "Colorless monolithically integrated 120° downconverter," Opt. Express 21, 23048-23057 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23048


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Optical Internetworking Forum (OIF), “100G ultra long haul DWDM framework document,” document OIF-FD-100G-DWDM-01.0 (June 2009), http://www.oiforum.com/public/impagreements.html .
  2. Mirthe Project, “Monolithic InP-based dual polarization QPSK integrated receiver and transmitter for coherent 100–400Gb Ethernet,” http://www.ist-mirthe.eu/ .
  3. R. Kunkel, H. G. Bach, D. Hoffmann, C. Weinert, I. Molina-Fernández, and R. Halir, “First monolithic InP-based 90 degrees-hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in International Conference on Indium Phosphide & Related Materials (IPRM, 2009), paper TuB2.2, pp. 167–170.
  4. B. Zhang, C. Malouin, and T. J. Schmidt, “Towards full band colorless reception with coherent balanced receivers,” Opt. Express20(9), 10339–10352 (2012). [CrossRef] [PubMed]
  5. L. E. Nelson, S. L. Woodward, S. Foo, M. Moyer, D. J. S. Beckett, M. O’Sullivan, and P. D. Magill, “Detection of a single 40 Gb/s polarization-multiplexed QPSK channel with a real-time intradyne receiver in the presence of multiple coincident WDM channels,” J. Lightwave Technol.28(20), 2933–2943 (2010). [CrossRef]
  6. V. E. Houtsma, N. G. Weimann, T. Hu, R. Kopf, A. Tate, J. Frackoviak, R. Reyes, Y. K. Chen, L. Zhang, C. R. Doerr, and D. T. Neilson, “Manufacturable monolithically integrated InP dual-port coherent receiver for 100G PDM-QPSK applications,” Tech. Digest Optical Fiber Comm. (OFC) (2011), paper OML2.
  7. P. J. Reyes-Iglesias, A. Ortega-Moñux, and I. Molina-Fernández, “Enhanced monolithically integrated coherent 120° downconverter with high fabrication yield,” Opt. Express20(21), 23013–23018 (2012). [CrossRef] [PubMed]
  8. P. Pérez-Lara, I. Molina-Fernández, J. G. Wangüemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010). [CrossRef]
  9. F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988). [CrossRef]
  10. P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012). [CrossRef] [PubMed]
  11. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008). [CrossRef] [PubMed]
  12. C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express20(2), 1164–1171 (2012). [CrossRef] [PubMed]
  13. A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagnetics Res.121, 225–247 (2011). [CrossRef]
  14. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008). [CrossRef]
  15. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994). [CrossRef]
  16. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited