OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23068–23074

Fast full-color computational imaging with single-pixel detectors

Stephen S. Welsh, Matthew P. Edgar, Richard Bowman, Phillip Jonathan, Baoqing Sun, and Miles J. Padgett  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23068-23074 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-pixel detectors can be used as imaging devices by making use of structured illumination. These systems work by correlating a changing incident light field with signals measured on a photodiode to derive an image of an object. In this work we demonstrate a system that utilizes a digital light projector to illuminate a scene with approximately 1300 different light patterns every second and correlate these with the back scattered light measured by three spectrally-filtered single-pixel photodetectors to produce a full-color high-quality image in a few seconds of data acquisition. We utilize a differential light projection method to self normalize the measured signals, improving the reconstruction quality whilst making the system robust to external sources of noise. This technique can readily be extended for imaging applications at non-visible wavebands.

© 2013 Optical Society of America

OCIS Codes
(110.1758) Imaging systems : Computational imaging
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: July 22, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 8, 2013
Published: September 23, 2013

Stephen S. Welsh, Matthew P. Edgar, Richard Bowman, Phillip Jonathan, Baoqing Sun, and Miles J. Padgett, "Fast full-color computational imaging with single-pixel detectors," Opt. Express 21, 23068-23074 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995). [CrossRef] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995). [CrossRef] [PubMed]
  3. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett.89, 113601 (2002). [CrossRef]
  4. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004). [CrossRef] [PubMed]
  5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004). [CrossRef]
  6. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005). [CrossRef] [PubMed]
  7. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
  8. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process.11, 949–993 (2012). [CrossRef]
  9. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802 (2008). [CrossRef]
  10. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008). [CrossRef]
  11. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005). [CrossRef]
  12. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013). [CrossRef] [PubMed]
  13. G. K. Wallace, “The jpeg still picture compression standard,” Commun. ACM34, 30–44 (1991). [CrossRef]
  14. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17, 22718–22725 (2009). [CrossRef]
  15. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010). [CrossRef] [PubMed]
  16. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express20, 16892–16901 (2012). [CrossRef]
  17. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett95, 131110 (2009). [CrossRef]
  18. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006). [CrossRef]
  19. K. Koh, S.-J. Kim, and S. P. Boyd, “An interior-point method for large-scale l1-regularized logistic regression.” J. Mach. Learn. Res.8, 1519–1555 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited