OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23107–23115

A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio

Hongbiao Gao, Cheng Lei, Minghua Chen, Fangjian Xing, Hongwei Chen, and Shizhong Xie  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23107-23115 (2013)
http://dx.doi.org/10.1364/OE.21.023107


View Full Text Article

Enhanced HTML    Acrobat PDF (1690 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the heterodyne beating between the pre-chirped optical pulse and the continuous wave (CW) light in a wideband photodetector (PD), linearly chirped microwave pulse with time duration of 3.2ns and bandwidth of 33GHz, which yields a large time-bandwidth product (TBWP) of 106 and high compression ratio of 160, is generated in our experiment. Dispersion compensation fiber (DCF) with uniform response across broad bandwidth is used for providing the original linear chirp in our method, which shows the promise to generate linearly chirped microwave pulse with bandwidth of up to THz. The flexibility of the center frequency and the stability of the time-frequency performance are demonstrated by generating different types of linearly chirped microwave pulses. The range resolution of our generated microwave pulse is also verified by off-line processing.

© 2013 OSA

OCIS Codes
(040.2840) Detectors : Heterodyne
(060.2630) Fiber optics and optical communications : Frequency modulation
(260.2030) Physical optics : Dispersion
(280.5600) Remote sensing and sensors : Radar
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Remote Sensing

History
Original Manuscript: July 4, 2013
Revised Manuscript: September 9, 2013
Manuscript Accepted: September 11, 2013
Published: September 23, 2013

Citation
Hongbiao Gao, Cheng Lei, Minghua Chen, Fangjian Xing, Hongwei Chen, and Shizhong Xie, "A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio," Opt. Express 21, 23107-23115 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23107


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech.61(5), 2046–2060 (2013). [CrossRef]
  2. O. Postolache, P. Girão, R. Madeira, and G. Postolache, “Microwave FMCW Doppler radar implementation for in-house pervasive health care system,” in Proc IEEE International Workshop on Medical Measurements (IEEE, 2010), 47–52. [CrossRef]
  3. M. Miyakawa and T. Hayashi, “Non-invasive thermometry using a chirp pulse microwave—-Tomographic measurement of temperature change in saline solution phantom of the human body,” in Proceedings of the 24th European Microwave Conference, 613–618 (1994).
  4. M. Bertero, M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, “Image restoration in chirp-pulse microwave CT (CP-MCT),” IEEE Trans. Biomed. Eng.47(5), 690–699 (2000). [CrossRef] [PubMed]
  5. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum.79(5), 053103 (2008). [CrossRef] [PubMed]
  6. A. W. Rihaczek, Principles of High-Resolution Radar (Artech House, 1996).
  7. H. D. Griffiths and W. J. Bradford, “Digital generation of high time-bandwidth product linear FM waveforms for radar altimeters,” IEE Proc. F139, 160–169 (1992).
  8. Y. Dai and J. P. Yao, “Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response,” IEEE Photon. Technol. Lett.21(9), 569–571 (2009). [CrossRef]
  9. Y. Dai and J. P. Yao, “Microwave pulse phase encoding using a photonic microwave delay-line filter,” Opt. Lett.32(24), 3486–3488 (2007). [CrossRef] [PubMed]
  10. H. Chi and J. P. Yao, “An approach to photonic generation of high frequency phase-coded RF pulses,” IEEE Photon. Technol. Lett.19(10), 768–770 (2007). [CrossRef]
  11. H. Chi and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal using a polarization modulator,” IEEE Microw. Wirel. Compon. Lett.18(5), 371–373 (2008). [CrossRef]
  12. Z. Li, W. Li, H. Chi, X. Zhang, and J. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photon. Technol. Lett.23(11), 712–714 (2011). [CrossRef]
  13. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol.30(11), 1638–1644 (2012). [CrossRef]
  14. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, “Photonic generation of phase-coded microwave signals with tunable carrier frequency,” Opt. Lett.38(8), 1361–1363 (2013). [CrossRef] [PubMed]
  15. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett.15(4), 581–583 (2003). [CrossRef]
  16. I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wide-band communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005). [CrossRef]
  17. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15), 1345–1347 (2002). [CrossRef] [PubMed]
  18. S. Xiao, J. D. McKinney, and A. M. Weiner, “Photonic microwave arbitrary waveform generation using a virtually-imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004). [CrossRef]
  19. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett.17(3), 660–662 (2005). [CrossRef]
  20. C. Wang and J. P. Yao, “Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings,” IEEE Photon. Technol. Lett.20(11), 882–884 (2008). [CrossRef]
  21. C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.56(2), 542–553 (2008). [CrossRef]
  22. C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol.27(16), 3336–3341 (2009). [CrossRef]
  23. C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol.28(11), 1652–1660 (2010). [CrossRef]
  24. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.59(12), 3531–3537 (2011). [CrossRef]
  25. R. Ashrafi, Y. Park, and J. Azaña, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech.58(11), 3312–3319 (2010). [CrossRef]
  26. J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express21(9), 11475–11481 (2013). [CrossRef] [PubMed]
  27. M. A. Muriel, J. Azaña, and A. Carballar, “Real-time Fourier transformer based on fiber gratings,” Opt. Lett.24(1), 1–3 (1999). [CrossRef] [PubMed]
  28. J. H. Jacobi and L. E. Larsen, “Linear FM pulse compression radar techniques applied to biological imaging,” in Medical Applications of Microwave Imaging (IEEE, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited