OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23130–23144

Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity

Henri Thyrrestrup, Alex Hartsuiker, Jean-Michel Gérard, and Willem L. Vos  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23130-23144 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have theoretically studied the effect of deterministic temporal control of spontaneous emission in a dynamic optical microcavity. We propose a new paradigm in light emission: we envision an ensemble of two-level emitters in an environment where the local density of optical states is modified on a time scale shorter than the decay time. A rate equation model is developed for the excited state population of two-level emitters in a time-dependent environment in the weak coupling regime in quantum electrodynamics. As a realistic experimental system, we consider emitters in a semiconductor microcavity that is switched by free-carrier excitation. We demonstrate that a short temporal increase of the radiative decay rate depletes the excited state and drastically increases the emission intensity during the switch time. The resulting time-dependent spontaneous emission shows a distribution of photon arrival times that strongly deviates from the usual exponential decay: A deterministic burst of photons is spontaneously emitted during the switch event.

© 2013 OSA

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(320.5540) Ultrafast optics : Pulse shaping
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Ultrafast Optics

Original Manuscript: June 12, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 19, 2013
Published: September 24, 2013

Henri Thyrrestrup, Alex Hartsuiker, Jean-Michel Gérard, and Willem L. Vos, "Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity," Opt. Express 21, 23130-23144 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today42, 24–30 (1989). [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003). [CrossRef] [PubMed]
  3. J. M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum dots,” Topics Appl. Phys.90, 283–327 (2003).
  4. J. P. Reithmaier, “Strong exciton-photon coupling in semiconductor quantum dot systems,” Semicond. Sci. Technol.23, 123001 (2008). [CrossRef]
  5. S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys.75, 126503 (2012). [CrossRef] [PubMed]
  6. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett.47, 233–236 (1981). [CrossRef]
  7. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap,” Phys. Rev. Lett.107, 193903 (2011). [CrossRef] [PubMed]
  8. Q. Wang, S. Stobbe, and P. Lodahl, “Mapping the local density of optical states of a photonic crystal with single quantum dots,” Phys. Rev. Lett.107, 167404 (2011). [CrossRef] [PubMed]
  9. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, “Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide,” Phys. Rev. Lett.101, 113903 (2008). [CrossRef] [PubMed]
  10. H. Thyrrestrup, L. Sapienza, and P. Lodahl, “Extraction of the beta-factor for single quantum dots coupled to a photonic crystal waveguide,” Appl. Phys. Lett.96, 231106 (2010). [CrossRef]
  11. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. García, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes.” Science327, 1352–1355 (2010). [CrossRef] [PubMed]
  12. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon.5, 83–90 (2011). [CrossRef]
  13. R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett.35, 265–270 (1996). [CrossRef]
  14. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81, 1110–1113 (1998). [CrossRef]
  15. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett.86, 3168–3171 (2001). [CrossRef] [PubMed]
  16. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445, 896–899 (2007). [CrossRef] [PubMed]
  17. A. Majumdar, D. Englund, M. Bajcsy, and J. Vučković, “Nonlinear temporal dynamics of a strongly coupled quantum-dot cavity system,” Phys. Rev. A85, 033802 (2012). [CrossRef]
  18. A. Lagendijk, “Vibrational relaxation studied with light,” in Ultrashort Processes in Condensed Matter, vol. 314 (1993), pp. 197–236. [CrossRef]
  19. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+in a transparent Si/SiO2microcavity,” Phys. Rev. Lett.71, 517–520 (1993). [CrossRef] [PubMed]
  20. J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett.55, 22–24 (1989). [CrossRef]
  21. T. Rivera, F. R. Ladan, A. Izrael, R. Azoulay, R. Kuszelewicz, and J. L. Oudar, “Reduced threshold all-optical bistability in etched quantum well microresonators,” Appl. Phys. Lett.64, 869–871 (1994). [CrossRef]
  22. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett.90, 091118 (2007). [CrossRef]
  23. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, “Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity,” Opt. Express15, 11472–11480 (2007). [CrossRef] [PubMed]
  24. P. J. Harding, T. G. Euser, Y.-R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Ultrafast optical switching of planar GaAs/AlAs photonic microcavities,” Appl. Phys. Lett.91, 111103 (2007). [CrossRef]
  25. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity,” Nat. Phot.2, 185–189 (2008). [CrossRef]
  26. N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A65, 043808 (2002). [CrossRef]
  27. W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A80, 053802 (2009). [CrossRef]
  28. R. Loudon, The Quantum Theory of Light (Oxford University, 2000), 3rd ed.
  29. I. S. Nikolaev, Spontaneous-Emission Rates of Quantum Dots and Dyes Controlled with Photonic Crystals, available online: http://www.photonicbandgaps.com , Ph.D. thesis, Universiteit of Twente (2006).
  30. E. Fermi, “Quantum theory of radiation,” Rev. Mod. Phys.4, 87–132 (1932). [CrossRef]
  31. A. F. van Driel, I. S. Nikolaev, P. Vergeer, P. Lodahl, D. Vanmaekelbergh, and W. L. Vos, “Statistical analysis of time-resolved emission from ensembles of semiconductor quantum dots: Interpretation of exponential decay models,” Phys. Rev. B75, 035329 (2007). [CrossRef]
  32. T. G. Euser, A. J. Molenaar, J. G. Fleming, B. Gralak, A. Polman, and W. L. Vos, “All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals,” Phys. Rev. B77, 115214 (2008). [CrossRef]
  33. P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B66, 081102 (2002). [CrossRef]
  34. A. A. Svidzinsky, “Nonlocal effects in single-photon superradiance,” Phys. Rev. A85, 013821 (2012). [CrossRef]
  35. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B65, 041308 (2002). [CrossRef]
  36. The resonant index change contribution from the excited emitters themselves can be neglected due to the low emitter density. Likewise the emission frequency shift caused by the refractive index change of the of the surrendering material is small compared to the cavity resonance shift and has been neglected.
  37. D. Chruściński and A. Kossakowski, “Non-Markovian Quantum Dynamics: Local versus Nonlocal”, Phys. Rev. Lett.104, 070406 (2010). [CrossRef]
  38. H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnüll, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys.90, 1303–1306 (2001). [CrossRef]
  39. M. O. Scully, V. V. Kocharovsky, A. Belyanin, E. Fry, and F. Capasso, “Enhancing Acceleration Radiation from Ground-State Atoms via Cavity Quantum Electrodynamics,” Phys. Rev. Lett.91, 243004 (2003). [CrossRef] [PubMed]
  40. P. P. Rohde, T. C. Ralph, and M. A. Nielsen, “Optimal photons for quantum-information processing,” Phys. Rev. A72, 052332 (2005). [CrossRef]
  41. R. Johne and A. Fiore, “Single-photon absorption and dynamic control of the exciton energy in a coupled quantum-dot-cavity system,” Phys. Rev. A84, 053850 (2011). [CrossRef]
  42. J. Dilley, P. Nisbet-Jones, B. W. Shore, and A. Kuhn, “Single-photon absorption in coupled atom-cavity systems,” Phys. Rev. A85, 023834 (2012). [CrossRef]
  43. M. Fernée, H. Rubinsztein-Dunlop, and G. Milburn, “Improving single-photon sources with Stark tuning,” Phys. Rev. A75, 043815 (2007). [CrossRef]
  44. C.-H. Su, A. D. Greentree, W. J. Munro, K. Nemoto, and L. C. L. Hollenberg, “Pulse shaping by coupled cavities: Single photons and qudits,” Phys. Rev. A80, 033811 (2009). [CrossRef]
  45. K. E. Dorfman and S. Mukamel, “Nonlinear spectroscopy with time- and frequency-gated photon counting: A superoperator diagrammatic approach,” Phys. Rev. A86, 013810 (2012). [CrossRef]
  46. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Phys.6, 283–292 (2012).
  47. P. J. Harding, Photonic crystals modified by optically resonant systems, available online: http://www.photonicbandgaps.com , Ph.D. thesis, Universiteit of Twente (2008).
  48. P. J. Harding, H. J. Bakker, A. Hartsuiker, J. Claudon, A. P. Mosk, J.-M. Gérard, and W. L. Vos, “Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity,” J. Opt. Soc. Am. B29, A1–A5 (2012). [CrossRef]
  49. P. J. Harding, A. P. Mosk, A. Hartsuiker, Y.-R. Nowicki-Bringuier, J.-M. Gérard, and W. L. Vos, “Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity,” arXiv:0901.3855 [physics.optics] (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited