OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23145–23159

Characterization and reduction of spectral distortions in Silicon-on-Insulator integrated Bragg gratings

Alexandre D. Simard, Guillaume Beaudin, Vincent Aimez, Yves Painchaud, and Sophie LaRochelle  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23145-23159 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A major issue in the fabrication of integrated Bragg grating filters in highly confined waveguides is the average effective index fluctuations caused by waveguide dimension variations. Lateral variations are caused by the sidewall roughness created during the etching process while vertical variations are coming from the wafer silicon layer thickness non-uniformity. Grating spectral distortions are known to result solely from the low spatial frequency components of these variations. As a result, in this work, we present an experimental method to quantify such relevant spatial components by stitching a hundred high-resolution scanning electron microscope images. Additionally, we propose two techniques to reduce, in the design, the phase noise impact on integrated Bragg gratings without relying on fabrication process improvements. More specifically, we show that the use of hybrid multimode/singlemode waveguides reduce by more than one order of magnitude the effect of sidewall roughness on integrated Bragg gratings while we show that the fabrication of ultra-compact gratings in spiral waveguides mitigate the impact of the silicon layer thickness variations.

© 2013 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(140.4780) Lasers and laser optics : Optical resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: July 3, 2013
Revised Manuscript: September 11, 2013
Manuscript Accepted: September 12, 2013
Published: September 24, 2013

Alexandre D. Simard, Guillaume Beaudin, Vincent Aimez, Yves Painchaud, and Sophie LaRochelle, "Characterization and reduction of spectral distortions in Silicon-on-Insulator integrated Bragg gratings," Opt. Express 21, 23145-23159 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of Sidewall Roughness on Integrated Bragg Gratings,” J. Lightwave Technol.29(24), 3693–3704 (2011). [CrossRef]
  2. A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized Silicon-on-Insulator Bragg Gratings,” IEEE Photon. Technol. Lett.24(12), 1033–1035 (2012). [CrossRef]
  3. M. A. Schneider and S. Mookherjea, “Modeling Transmission Time of Silicon Nanophotonic Waveguides,” IEEE Photon. Technol. Lett.24(16), 1418–1420 (2012). [CrossRef]
  4. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett.77(11), 1617 (2000). [CrossRef]
  5. K. P. Yap, A. Delâge, B. Lamontagne, S. Janz, D.-X. Xu, J. Lapointe, P. Waldron, J. Schmid, P. Chow-Chong, E. Post, and B. Syrett, “Scattering loss measurement of SOI waveguides using 5X17 integrated optical star coupler,” in Conference Proceedings on Integrated Optoelectronic Devices, International Society for Optics and Photonics, 64770J (2007).
  6. W. A. Zortman, M. R. Watts, and D. C. Trotter, “Determination of Wafer and Process Induced Resonant Frequency Variation in Silicon Microdisk-Resonators,” in Conference Proceedings on Integrated Photonics and Nanophotonics Research and Applications, paper IMC5 (2009).
  7. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express20(14), 15547–15558 (2012). [CrossRef] [PubMed]
  8. S. Sardo, F. Giacometti, S. Doneda, U. Colombo, M. D. Muri, A. Donghi, R. Morson, G. Mutinati, A. Nottola, M. Gentili, and M. C. Ubaldi, “Line edge roughness (LER) reduction strategy for SOI waveguides fabrication,” Microelectron. Eng.85(5–6), 1210–1213 (2008). [CrossRef]
  9. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol.23(8), 2455–2461 (2005). [CrossRef]
  10. J. Cai, Y. Wang, Y. Ishikawa, Y. Yamashita, Y. Kamiura, and K. Wada, “Hydrogen plasma treatment for Si waveguide smoothing,” in 8th IEEE International Conference on Group IV Photonics, 95–97, London, United Kingdom (2011). [CrossRef]
  11. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26(23), 1888–1890 (2001). [CrossRef] [PubMed]
  12. S. K. Selvaraja, E. Rosseel, L. Fernandez, M. Tabat, W. Bogaerts, J. Hautala, and P. Absil, “SOI thickness uniformity improvement using corrective etching for silicon nano-photonic device,” in in 8th IEEE International Conference on Group IV Photonics London, United Kingdom, 71–73 (2011). [CrossRef]
  13. K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett, and S. Janz, “Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides,” J. Lightwave Technol.27(18), 3999–4008 (2009). [CrossRef]
  14. G. P. Patsis, V. Constantoudis, A. Tserepi, E. Gogolides, and G. Grozev, “Quantification of line-edge roughness of photoresists. I. A comparison between off-line and on-line analysis of top-down scanning electron microscopy images,” J. Vac. Sci. Technol. B21(3), 1008–1018 (2003). [CrossRef]
  15. V. Constantoudis, G. P. Patsis, A. Tserepi, and E. Gogolides, “Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors,” J. Vac. Sci. Technol. B21(3), 1019–1026 (2003). [CrossRef]
  16. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg Gratings in Curved Waveguides,” in the 23rd Annual Meeting of the Photonics Society Denver, USA, ThU3 (2010). [CrossRef]
  17. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Integrated Bragg gratings in spiral waveguides,” Opt. Express21(7), 8953–8963 (2013). [CrossRef] [PubMed]
  18. F. Ladouceur, J. D. Love, and T. J. Senden, “Measurement of surface roughness in buried channel waveguides,” Electron. Lett.28(14), 1321–1322 (1992). [CrossRef]
  19. T. Barwicz and H. A. Haus, “Three-Dimensional Analysis of Scattering Losses Due to Sidewall Roughness in Microphotonic Waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005). [CrossRef]
  20. T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B21(6), 2892–2896 (2003). [CrossRef]
  21. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Characterization of Integrated Bragg Grating Profiles,” in Conference Proceedings on Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, paper BM3D.7 (2012).
  22. A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron.39(8), 1018–1026 (2003). [CrossRef]
  23. V. Eswaran and S. B. Pope, “Direct numerical simulations of the turbulent mixing of a passive scalar,” Phys. Fluids31(3), 506–520 (1988). [CrossRef]
  24. S. B. Pope, “Turbulent flows,” (Cambridge University Press, 2000).
  25. P. L. O’Neill, D. Nicolaides, D. Honnery, and J. Soria, “Autocorrelation functions and the determination of integral length with reference to experimental and numerical data,” in 15th Australasian fluid mechanics conference, Sydney, Australia (2004).
  26. S. Spector, M. W. Geis, D. Lennon, R. C. Williamson, and T. M. Lyszczarz, “Hybrid multi-mode/single-mode waveguides for low loss,” in Integrated Photonics Research, Optical Society of America (2004).
  27. X. Wang, W. Shi, M. Hochberg, K. Adam, E. Schelew, J. F. Young, N. A. F. Jaeger, and L. Chrostowski, “Lithography simulation for the fabrication of silicon photonic devices with deep-ultraviolet lithography,” in 9th International Conference on Group IV Photonics (GFP), 288 –290 (2012). [CrossRef]
  28. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness Induced Backscattering in Optical Silicon Waveguides,” Phys. Rev. Lett.104(3), 033902 (2010). [CrossRef] [PubMed]
  29. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E.-J. Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited