OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23160–23168

All-optical osteotomy to create windows for transcranial imaging in mice

Diana C. Jeong, Philbert S. Tsai, and David Kleinfeld  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23160-23168 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3366 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surgical procedures as a prelude to optical imaging are a rate-limiting step in experimental neuroscience. Towards automation of these procedures, we describe the use of nonlinear optical techniques to create a thinned skull window for transcranial imaging. Metrology by second harmonic generation was used to map the surfaces of the skull and define a cutting path. Plasma-mediated laser ablation was utilized to cut bone. Mice prepared with these techniques were used to image subsurface cortical vasculature and blood flow. The viability of the brain tissue was confirmed via histological analysis and supports the utility of solely optical techniques for osteotomy and potentially other surgical procedures.

© 2013 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.0180) Microscopy : Microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 9, 2013
Revised Manuscript: August 31, 2013
Manuscript Accepted: September 6, 2013
Published: September 24, 2013

Diana C. Jeong, Philbert S. Tsai, and David Kleinfeld, "All-optical osteotomy to create windows for transcranial imaging in mice," Opt. Express 21, 23160-23168 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  3. P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods7(12), 981–984 (2010). [CrossRef] [PubMed]
  4. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature385(6612), 161–165 (1997). [CrossRef] [PubMed]
  5. H. T. Xu, F. Pan, G. Yang, and W. B. Gan, “Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex,” Nat. Neurosci.10(5), 549–551 (2007). [CrossRef] [PubMed]
  6. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc.4(8), 1128–1144 (2009). [CrossRef] [PubMed]
  7. B. J. Schaller, R. Gruber, H. A. Merten, T. M. A. Kruschat, H. M. D. Schliephake, M. Buchfelder, and H. C. Ludwig, “Piezoelectric bone surgery: A revolutionary technique for minimally invasive surgery in cranial base and spinal surgery? Technical note,” Neurosurgery57(Suppl.4 ), E410, discussion E410 (2005). [CrossRef] [PubMed]
  8. R. D. Piper, G. A. Lambert, and J. W. Duckworth, “Cortical blood flow changes during spreading depression in cats,” Am. J. Physiol.261(1 Pt 2), H96–H102 (1991). [PubMed]
  9. A. Arieli, A. Grinvald, and H. Slovin, “Dural substitute for long-term imaging of cortical activity in behaving monkeys and its clinical implications,” J. Neurosci. Methods114(2), 119–133 (2002). [CrossRef] [PubMed]
  10. R. B. Boyd, Nonlinear Optics, Second Edition (Academic Press, 2004).
  11. Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, “Second-harmonic tomography of tissues,” Opt. Lett.22(17), 1323–1325 (1997). [CrossRef] [PubMed]
  12. R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,” Phys. Rev. Lett.8(10), 404–406 (1962). [CrossRef]
  13. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999). [CrossRef] [PubMed]
  14. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103(2), 577–644 (2003). [CrossRef] [PubMed]
  15. S. I. Mian and R. M. Shtein, “Femtosecond laser-assisted corneal surgery,” Curr. Opin. Ophthalmol.18(4), 295–299 (2007). [CrossRef] [PubMed]
  16. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J Biophotonics2(10), 557–572 (2009). [CrossRef] [PubMed]
  17. H. K. Soong, S. Mian, O. Abbasi, and T. Juhasz, “Femtosecond laser-assisted posterior lamellar keratoplasty: Initial studies of surgical technique in eye bank eyes,” Ophthalmology112(1), 44–49 (2005). [CrossRef] [PubMed]
  18. P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: An optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20(1), 90–99 (2009). [CrossRef] [PubMed]
  19. M. Farid and R. F. Steinert, “Femtosecond laser-assisted corneal surgery,” Curr. Opin. Ophthalmol.21(4), 288–292 (2010). [PubMed]
  20. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A.101(16), 5856–5861 (2004). [CrossRef] [PubMed]
  21. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett.74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  22. F. H. Loesel, M. H. Niemz, J. F. Bille, and T. Juhasz, “Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: Experiment and model,” IEEE J. Quantum Electron.32(10), 1717–1722 (1996). [CrossRef]
  23. W. B. Armstrong, J. A. Neev, L. B. Da Silva, A. M. Rubenchik, and B. C. Stuart, “Ultrashort pulse laser ossicular ablation and stapedotomy in cadaveric bone,” Lasers Surg. Med.30(3), 216–220 (2002). [CrossRef] [PubMed]
  24. Y. Liu and M. Niemz, “Ablation of femural bone with femtosecond laser pulses--A feasibility study,” Lasers Med. Sci.22(3), 171–174 (2007). [CrossRef] [PubMed]
  25. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express18(17), 18086–18094 (2010). [CrossRef] [PubMed]
  26. D. C. Jeong, P. S. Tsai, and D. Kleinfeld, “Prospect for feedback guided surgery with ultra-short pulsed laser light,” Curr. Opin. Neurobiol.22(1), 24–33 (2012). [CrossRef] [PubMed]
  27. P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron39(1), 27–41 (2003). [CrossRef] [PubMed]
  28. P. S. Tsai and D. Kleinfeld, “In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation: Principles and hardware realization,” in Methods for In Vivo Optical Imaging, 2nd edition, R.D. Frostig, Ed. (CRC Press, 2009), p. 59–115.
  29. A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, and D. Kleinfeld, “Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain,” J. Cereb. Blood Flow Metab.32(7), 1277–1309 (2012). [CrossRef] [PubMed]
  30. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U.S.A.95(26), 15741–15746 (1998). [CrossRef] [PubMed]
  31. P. J. Drew, P. Blinder, G. Cauwenberghs, A. Y. Shih, and D. Kleinfeld, “Rapid determination of particle velocity from space-time images using the Radon transform,” J. Comput. Neurosci.29(1-2), 5–11 (2010). [CrossRef] [PubMed]
  32. J. E. W. Mayhew, S. Askew, Y. Zheng, J. Porrill, G. W. M. Westby, P. Redgrave, D. M. Rector, and R. M. Harper, “Cerebral vasomotion: 0.1 Hz oscillation in reflectance imaging of neural activity,” Neuroimage4(3), 183–193 (1996). [CrossRef] [PubMed]
  33. N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, “Targeted insult to individual subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke,” Nat. Methods3(2), 99–108 (2006). [CrossRef] [PubMed]
  34. N. Latov, G. Nilaver, E. A. Zimmerman, W. G. Johnson, A.-J. Silverman, R. Defendini, and L. Cote, “Fibrillary astrocytes proliferate in response to brain injury,” Dev. Biol.72(2), 381–384 (1979). [CrossRef] [PubMed]
  35. R. J. Mullen, C. R. Buck, and A. M. Smith, “NeuN, a neuronal specific nuclear protein in vertebrates,” Development116(1), 201–211 (1992). [PubMed]
  36. D. A. Dawson and J. M. Hallenbeck, “Acute focal ischemia-induced alterations in MAP2 immunostaining: Description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury,” J. Cereb. Blood Flow Metab.16(1), 170–174 (1996). [CrossRef] [PubMed]
  37. D. Oron and Y. Silberberg, “Spatiotemporal coherent control using shaped, temporally focused pulses,” Opt. Express13(24), 9903–9908 (2005). [CrossRef] [PubMed]
  38. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M. T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002). [CrossRef] [PubMed]
  39. K. E. Sheetz, E. E. Hoover, R. Carriles, D. Kleinfeld, and J. A. Squier, “Advancing multifocal nonlinear microscopy: Development and application of a novel multibeam Yb:KGd(WO4)2 oscillator,” Opt. Express16(22), 17574–17584 (2008). [CrossRef] [PubMed]
  40. J. J. Field, K. E. Sheetz, E. V. Chandler, E. E. Hoover, M. D. Young, S.-Y. Ding, A. W. Sylvester, D. Kleinfeld, and J. A. Squier, “Differential multiphoton laser-scanning microscopy,” IEEE J. Sel. Top. Quantum Electron.18(1), 14–28 (2012). [CrossRef]
  41. E. M. Maynard, C. T. Nordhausen, and R. A. Normann, “The Utah intracortical Electrode Array: a recording structure for potential brain-computer interfaces,” Electroencephalogr. Clin. Neurophysiol.102(3), 228–239 (1997). [CrossRef] [PubMed]
  42. A. N. Zorzos, J. Scholvin, E. S. Boyden, and C. G. Fonstad, “Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits,” Opt. Lett.37(23), 4841–4843 (2012). [CrossRef] [PubMed]
  43. E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: Physics, applications, and perspectives,” Appl. Spectrosc.61(10), 233A–242A (2007). [CrossRef] [PubMed]
  44. B. M. Kim, M. D. Feit, A. M. Rubenchik, B. M. Mammini, and L. B. Da Silva, “Optical feedback signal for ultrashort laser-pulse ablation of tissue,” Appl. Surf. Sci.127–129, 857–862 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited