OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23181–23187

Scattering and absorption from strongly anisotropic nanoparticles

Satoshi Ishii, Shin-ichiro Inoue, and Akira Otomo  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23181-23187 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Strongly anisotropic particles with hyperbolic dispersion that are small compared with the wavelength show strong resonance in the near infrared. The unique resonance modes are insensitive to the host refractive index and independent of particle size. In addition, the far-field direction of scattering does not depend on incident angle. Because the strength of resonance is comparable to a plasmonic nanoparticle in the visible region, a hyperbolic-dispersed particle is a promising scatterer as well as local heater in the near infrared.

© 2013 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(290.5850) Scattering : Scattering, particles
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: July 15, 2013
Revised Manuscript: September 7, 2013
Manuscript Accepted: September 9, 2013
Published: September 24, 2013

Satoshi Ishii, Shin-ichiro Inoue, and Akira Otomo, "Scattering and absorption from strongly anisotropic nanoparticles," Opt. Express 21, 23181-23187 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media, 2007).
  3. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. U.S.A.108(28), 11327–11331 (2011). [CrossRef] [PubMed]
  4. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012). [CrossRef]
  5. D. Li, L. Qin, X. Xiong, R.-W. Peng, Q. Hu, G.-B. Ma, H.-S. Zhou, and M. Wang, “Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates,” Opt. Express19(23), 22942–22949 (2011). [CrossRef] [PubMed]
  6. W. T. Chen, M. L. Tseng, C. Y. Liao, P. C. Wu, S. Sun, Y.-W. Huang, C. M. Chang, C. H. Lu, L. Zhou, D.-W. Huang, A. Q. Liu, and D. P. Tsai, “Fabrication of three-dimensional plasmonic cavity by femtosecond laser-induced forward transfer,” Opt. Express21(1), 618–625 (2013). [CrossRef] [PubMed]
  7. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  8. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B74(7), 075103 (2006). [CrossRef]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  10. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  11. S. Thongrattanasiri and V. A. Podolskiy, “Hypergratings: nanophotonics in planar anisotropic metamaterials,” Opt. Lett.34(7), 890–892 (2009). [CrossRef] [PubMed]
  12. S. Ishii, V. P. Drachev, and A. V. Kildishev, “Diffractive nanoslit lenses for subwavelength focusing,” Opt. Commun.285(16), 3368–3372 (2012). [CrossRef]
  13. S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev.7(2), 265–271 (2013). [CrossRef]
  14. Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B100(1), 215–218 (2010). [CrossRef]
  15. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. E. Bonner, and M. A. Noginov, “Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett.99(15), 151115 (2011). [CrossRef]
  16. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  17. S. M. Rytov, “Electromagnetic Propeties of a Finely Stratified Medium,” Sov. Phys. JETP2, 466–475 (1956).
  18. X. Ni, Z. Liu, and A. V. Kildishev, Photonics DB: Optical Constants (DOI: 10.4231/D3FT8DJ4J) (2008).
  19. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  20. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys.10(10), 105006 (2008). [CrossRef]
  21. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  22. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2: 492(2012).
  23. A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984), Vol. 5.
  24. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett.78(19), 2931–2933 (2001). [CrossRef]
  25. P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, “Many-Body Radiative Heat Transfer Theory,” Phys. Rev. Lett.107(11), 114301 (2011). [CrossRef] [PubMed]
  26. O. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, and N. J. Halas, “Solar vapor generation enabled by nanoparticles,” ACS Nano7(1), 42–49 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited