OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23220–23230

Inverse design of the absorbing layer for detection enhancement in near-infrared range

Namjoon Heo, Jaeyeol Lee, Hyundo Shin, Jeonghoon Yoo, and Daekeun Kim  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23220-23230 (2013)
http://dx.doi.org/10.1364/OE.21.023220


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In spite of rapidly increasing demand and various applications of infrared (IR) detectors, their design process for the performance improvement has been mostly dependent on researchers’ intuition and knowledge. We present two-dimensional unit structure design of the absorbing layer in IR detectors. A systematic approach is introduced to enhance the absorbing efficiency of incident beam in the near-infrared wavelength range. We derived a layered structure composed of a silicon nitride (Si3N4) layer and an amorphous silicon (a-Si) one in turn by the so called topology optimization in association with the time variant finite element analysis (FEA). It is confirmed that thickness at each layer is in associated with the IR wavelength so that detail dimensions of each layer are inferred. A prototype of the layered structure was fabricated and its performance has been verified through experimental measurement.

© 2013 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:
Detectors

History
Original Manuscript: July 29, 2013
Revised Manuscript: September 15, 2013
Manuscript Accepted: September 18, 2013
Published: September 24, 2013

Citation
Namjoon Heo, Jaeyeol Lee, Hyundo Shin, Jeonghoon Yoo, and Daekeun Kim, "Inverse design of the absorbing layer for detection enhancement in near-infrared range," Opt. Express 21, 23220-23230 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Laamanen, M. Blomberg, R. L. Puurunen, A. Miranto, H. Kattelus, “Thin film absorbers for visible, near-infrared, and short-wavelength infrared spectra,” Sensor Actuator A 162(2), 210–214 (2010). [CrossRef]
  2. A. Rogalski, Infrared Detectors (CRC Press, 2011).
  3. A. Rogalski, “Infrared detector: status and trends,” Prog. Quantum Electron. 27(2-3), 59–210 (2003). [CrossRef]
  4. M. Yuan, X. Zhou, X. Yu, “Study on Infrared Absorption Characteristics of Ti and TiNx Nanofilms,” ECS Trans. 44, 1429–1435 (2012). [CrossRef]
  5. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43(3-5), 187–210 (2002). [CrossRef]
  6. A. Lin, J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008). [CrossRef]
  7. P. Campbell, M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62(1), 243–249 (1987). [CrossRef]
  8. C. Haase, H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007). [CrossRef]
  9. R. Dewan, D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys. 106(7), 074901 (2009). [CrossRef]
  10. H. Soh, J. Yoo, “Texturing design for a light trapping system using topology optimization,” IEEE Trans. Magn. 48(2), 227–230 (2012). [CrossRef]
  11. J. B. Baxter, E. S. Aydil, “Nanowire-based dye-sensitized solar cells,” Appl. Phys. Lett. 86(5), 053114 (2005). [CrossRef]
  12. J. Li, H. Yu, S. M. Wong, G. Zhang, G. Lo, D. Kwong, “Si nanocone array optimization on crystalline Si thin films for solar energy harvesting,” J. Phys. D Appl. Phys. 43(25), 255101 (2010). [CrossRef]
  13. E. D. Kosten, E. L. Warren, H. A. Atwater, “Ray optical light trapping in Silicon microwires: exceeding the 2n2 intensity limit,” Opt. Express 19(4), 3316–3331 (2011). [CrossRef] [PubMed]
  14. D. Lockau, T. Sontheimer, C. Becker, E. Rudigier-Voigt, F. Schmidt, B. Rech, “Nanophotonic light trapping in 3-dimensional thin-film silicon architectures,” Opt. Express 21(S1Suppl 1), A42–A52 (2013). [CrossRef] [PubMed]
  15. H. Soh, J. Yoo, D. Kim, “Optimal design of the light absorbing layer in thin film silicon solar cells,” Sol. Energy 86(7), 2095–2105 (2012). [CrossRef]
  16. M. P. Bendsøe, N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Method Appl. M. 71(2), 197–224 (1988). [CrossRef]
  17. M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods, and applications (Springer-Verlag, 2003).
  18. J. Yoo, N. Kikuchi, J. L. Volakis, “Structural optimization in magnetic devices by the homogenization design method,” IEEE Trans. Magn. 36(3), 574–580 (2000). [CrossRef]
  19. J. S. Jensen, O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22(6), 1191–1198 (2005). [CrossRef]
  20. J. Andkjær, S. Nishiwaki, T. Nomura, O. Sigmund, “Topology optimization of grating couplers for the efficient excitation of surface plasmons,” J. Opt. Soc. Am. B 27(9), 1828–1832 (2010). [CrossRef]
  21. R. Matzen, J. S. Jensen, O. Sigmund, “Topology optimization for transient response of photonic crystal structures,” J. Opt. Soc. Am. B 27(10), 2040–2050 (2010). [CrossRef]
  22. T. Nomura, S. Nishiwaki, K. Sato, K. Hirayama, “Topology optimization for the design of periodic microstructures composed of electromagnetic materials,” Finite Elem. Anal. Des. 45(3), 210–226 (2009). [CrossRef]
  23. D. Bergström, J. Powell, A. F. H. Kaplan, “The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature,” Appl. Surf. Sci. 253(11), 5017–5028 (2007). [CrossRef]
  24. L. Hanssen, “Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples,” Appl. Opt. 40(19), 3196–3204 (2001). [CrossRef] [PubMed]
  25. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).
  26. J. Springer, A. Poruba, L. Müllerova, M. Vanecek, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95(3), 1427–1429 (2004). [CrossRef]
  27. P. Ye, Optical waves in layered media (Wiley, 1998).
  28. D. W. Driscoll and W. Vaughan, Handbook of optics (McGraw-Hill, New York, 1978)
  29. D. N. Wang, J. M. White, K. S. Law, and C. Leung, “Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process,” US Patent, 5000113 (1991).
  30. G. S. Sandhu and T. W. Buley, “Low-pressure chemical vapor deposition process for depositing high-density, highly-conformal titanium nitride films of low bulk resistivity,” US Patent, 5246881 (1993).
  31. U. Willamowski, D. Ristau, E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37(36), 8362–8370 (1998). [CrossRef] [PubMed]
  32. J. M. Palmer, Handbook of optics, (McGraw-Hill, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited