OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23272–23285

Light absorption in hybrid silicon-on-insulator/quantum dot waveguides

Abdoulghafar Omari, Pieter Geiregat, Dries Van Thourhout, and Zeger Hens  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23272-23285 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the absorption coefficient of planarized silicon-on-insulator waveguides coated by close packed mono- and multilayers of colloidal PbS/CdS quantum dots (QDs). Experimental data clearly show the influence of the QDs on the waveguide absorbance around 1500 nm, where we find that QDs absorb stronger in thicker layers. To simulate the absorption coefficient of QD functionalized waveguides, the QD layer is replaced by an effective medium with a dielectric function determined by dipolar coupling between neighbouring QDs. Using the host dielectric constant εh as an adjustable parameter, excellent agreement with the experimental results is obtained. In this way, the increase in absorption cross section with layer thickness can be traced back to an increasing εh. We argue that this reflects the decreasing influence of the surroundings on the εh, which therefore evolves from an extrinsic property for monolayers to a more intrinsic film property for multilayers.

© 2013 OSA

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.4760) Materials : Optical properties
(230.7370) Optical devices : Waveguides
(230.7390) Optical devices : Waveguides, planar
(240.0310) Optics at surfaces : Thin films
(300.1030) Spectroscopy : Absorption
(310.6860) Thin films : Thin films, optical properties
(260.2065) Physical optics : Effective medium theory
(160.4236) Materials : Nanomaterials

ToC Category:
Optical Devices

Original Manuscript: June 6, 2013
Revised Manuscript: August 25, 2013
Manuscript Accepted: August 29, 2013
Published: September 24, 2013

Abdoulghafar Omari, Pieter Geiregat, Dries Van Thourhout, and Zeger Hens, "Light absorption in hybrid silicon-on-insulator/quantum dot waveguides," Opt. Express 21, 23272-23285 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. W. Wise, “Lead salt quantum dots: The limit of strong quantum confinement,” Accounts of Chemical Research3, 773–780 (2000). [CrossRef]
  2. A. Omari, I. Moreels, F. Masia, W. Langbein, P. Borri, D. Van Thourhout, P. Kockaert, and Z. Hens, “Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm,” Phys. Rev. B85, 115318 (2012). [CrossRef]
  3. B. De Geyter, A. J. Houtepen, S. Carrillo, P. Geiregat, Y. Gao, S. ten Cate, J. M. Schins, D. Van Thourhout, C. Delerue, L. D. A. Siebbeles, and Z. Hens, “Broadband and picosecond intraband absorption in lead-based colloidal quantum dots,” ACS Nano6, 6067–6074 (2012). [CrossRef] [PubMed]
  4. J. Heo, Z. Jiang, J. Xu, and P. Bhattacharya, “Coherent and directional emission at 1.55 mu m from PbSe colloidal quantum dot electroluminescent device on silicon,” Opt. Express19, 26394–26398 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-27-26394 . [CrossRef]
  5. N. Daldosso, D. Navarro-Urrios, A. Pitanti, F. Gourbil-leau, R. Rizk, and L. Pavesi, “Erbium and silicon nanocrystals for light amplification,” in Proceedings of IEEE Conference of Lasers and Electro-Optics Society (LEOS)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 933–934.
  6. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 mu m quantum dot laser with temperature-invariant emission wavelength,” Opt. Express14, 3273–3281 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3273 . [CrossRef] [PubMed]
  7. J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoog- land, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal quantum-dot photodetectors,” Nature Nanotechnology4, 40–44 (2009). [CrossRef]
  8. I. Moreels, B. De Geyter, D. Van Thourhout, and Z. Hens, “Transmission of a quantum-dot-silicon-on-insulator hybrid notch filter,” J. Opt. Soc. Am. B26, 1243–1247 (2009). [CrossRef]
  9. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Letters9, 2849–2854 (2009). [CrossRef] [PubMed]
  10. A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia- Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Letters10, 1506–1511 (2010). [CrossRef] [PubMed]
  11. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chemical Reviews110, 389–458 (2010). [CrossRef]
  12. J. F. Young, C. Foell, E. Schelew, and Q. Haijun, “Coupling of nanocrystals and photonic crystals for non-linear applications,” in Proceedings of IEEE Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)(Institute of Electrical and Electronics Engineers, Lake Buena Vista, FL, 2007), 129–130.
  13. B. De Geyter, K. Komorowska, E. Brainis, P. Em- plit, P. Geiregat, A. Hassinen, Z. Hens, and D. Van Thourhout, “From fabrication to mode mapping in silicon nitride microdisks with embedded colloidal quantum dots,” Appl. Phys. Lett.101, 161101 (2012). [CrossRef]
  14. Z. Hens and I. Moreels, “Light absorption by colloidal semiconductor quantum dots,” Journal of Materials Chemistry22, 10406–10415 (2012). [CrossRef]
  15. P. Geiregat, Y. Justo, S. Abe, S. Flamee, and Z. Hens, “Giant and broad-band absorption enhancement in colloidal quantum dot monolayers through dipolar coupling,” ACS Nano7, 987–993 (2013). [CrossRef] [PubMed]
  16. See the Appendix section for a thorough discussion of the synthesis, dielectric function, coupled dipole model, experimental and simulated results.
  17. J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, and J. A. Hollingsworth, “Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission,” Journal of the American Chemical Society130, 4879–4885 (2008). [CrossRef] [PubMed]
  18. Y. Justo, P. Geiregat, K. Van Hoecke, F. Vanhaecke, C.D. Donega, and Z. Hens, “Optical properties of PbS/CdS quantum dots,” Journal of Physical Chemistry C, Just Accepted Manuscript.
  19. B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97, 161908 (2010). [CrossRef]
  20. K. Lambert, I. Moreels, D. Van Thourhout, and Z. Hens, “Quantum dot micropatterning on Si,” Langmuir24, 5961–5966 (2008). [CrossRef] [PubMed]
  21. Y. Justo, I. Moreels, K. Lambert, and Z. Hens, “Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence,” Nanotechnology21, 295606 (2010). [CrossRef] [PubMed]
  22. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dots obtained by a Kramers-Kronig analysis of the absorbance spectrum,” Phys. Rev. B81, 235319 (2010). [CrossRef]
  23. R. Signorell and A. Bertram, “Physical chemistry of aerosols,” Physical chemistry chemical physics : PCCP11, 7759–7759 (2009). [CrossRef] [PubMed]
  24. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B110, 671–673 (2006). [CrossRef] [PubMed]
  25. A. Neeves and M. Birnboim, “Composite structures for the enhancement of nonlinear-opitcal susceptibility,” J. Opt. Soc. Am. B6, 787–796 (1989). [CrossRef]
  26. S. Ninomiya and S. Adachi, “Optical-properties of wurtzite CdS,” J. Appl. Phys.78, 1183–1190 (1995). [CrossRef]
  27. A. V. Goncharenko, “Optical properties of core-shell particle composites. I. Linear response,” Chem. Phys. Lett.386, 25–31 (2004). [CrossRef]
  28. J. C. De Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photo-luminescence quantum efficiency,” Adv. Mat.9, 230232 (1997). [CrossRef]
  29. R. Quintero-Torres, C. A. Foell, J. Pichaandi, F. C. J. M. van Veggel, and J. F. Young, “Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films,” Appl. Phys. Lett.101, 121904 (2012). [CrossRef]
  30. C. A. Foell, E. Schelew, H. Qiao, K. A. Abel, S. Hughes, F. C. J. M. van Veggel, and J. F. Young, “Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits,” Opt. Express20, 10453–10469 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-10-10453 . [CrossRef] [PubMed]
  31. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.14, 949 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited