OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23286–23294

Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection

David Marpaung, Blair Morrison, Ravi Pant, Chris Roeloffzen, Arne Leinse, Marcel Hoekman, Rene Heideman, and Benjamin J. Eggleton  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23286-23294 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a simple technique in microwave photonic (MWP) signal processing that allows the use of an optical filter with a shallow notch to exhibit a microwave notch filter with anomalously high rejection level. We implement this technique using a low-loss, tunable Si3N4 optical ring resonator as the optical filter, and achieved an MWP notch filter with an ultra-high peak rejection > 60 dB, a tunable high resolution bandwidth of 247-840 MHz, and notch frequency tuning of 2-8 GHz. To our knowledge, this is a record combined peak rejection and resolution for an integrated MWP filter.

© 2013 OSA

OCIS Codes
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 13, 2013
Revised Manuscript: September 11, 2013
Manuscript Accepted: September 16, 2013
Published: September 24, 2013

David Marpaung, Blair Morrison, Ravi Pant, Chris Roeloffzen, Arne Leinse, Marcel Hoekman, Rene Heideman, and Benjamin J. Eggleton, "Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection," Opt. Express 21, 23286-23294 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006). [CrossRef]
  3. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tenability and high selectivity,” Nat. Photonics6(3), 186–194 (2012). [CrossRef]
  4. W. W. Zhang and R. A. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.24(14), 1182–1184 (2012). [CrossRef]
  5. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(4), 506–538 (2013). [CrossRef]
  6. D. Cabric, I. D. O'Donnell, M. S.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag.6(2), 30–45 (2006). [CrossRef]
  7. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag.4(2), 36–47 (2003). [CrossRef]
  8. J. Lee, T. Lee, and W. Chappell, “Lumped-element realization of absorptive bandstop filter with anomalously high spectral isolation,” IEEE Trans. Microw. Theory Tech.60(8), 2424–2430 (2012). [CrossRef]
  9. T. Snow, J. Lee, and W. Chappell, “Tunable high quality-factor absorptive bandstop filter design,” IEEE MTT-S Int. Microw. Symp. Dig. Jun. (2012). [CrossRef]
  10. B. Kim, J. Lee, J. Lee, B. Jung, and W. J. Chappell, “RF CMOS integrated on-chip tunable absorptive bandstop filter using Q-tunable resonators,” IEEE Trans. Electron. Dev.60(5), 1730–1737 (2013). [CrossRef]
  11. M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011). [CrossRef] [PubMed]
  12. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012). [CrossRef] [PubMed]
  13. M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low loss silicon ring resonators,” J. Lightwave Technol.27(12), 2105–2110 (2009). [CrossRef]
  14. J. Dong, L. Liu, D. Gao, Y. Yu, A. Zheng, T. Yang, and X. Zhang, “Compact notch microwave photonic filters using on-chip integrated microring resonators,” IEEE Photon. J.5(2), 5500307 (2013). [CrossRef]
  15. A. Perentos, F. Cuesta-Soto, A. Canciamilla, B. Vidal, L. Pierno, N. Losilla, F. Lopez-Royo, A. Melloni, and S. Iezekiel, “Using Si3N4 ring resonator notch filter for optical carrier reduction and modulation depth enhancement in radio-over-fiber links,” IEEE Photon. J. 5(1), (2013).
  16. D. Marpaung, R. Pant, B. Morrison, E. Li, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Microwave photonic notch filter using on-chip stimulated Brillouin scattering,” Proc. CLEO-PR 2013, paper ThB2–6, Kyoto, Japan, 30 June-4 July (2013).
  17. A. A. Savchenkov, W. Liang, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Narrowband tunable photonic notch filter,” Opt. Lett.34(9), 1318–1320 (2009). [CrossRef] [PubMed]
  18. A. Byrnes, R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express20(17), 18836–18845 (2012). [CrossRef] [PubMed]
  19. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012). [CrossRef]
  20. D. Marpaung, R. Pant, B. Morrison, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously-high stopband rejection,” arXiv:1308.1146 [physics.optics] (2013).
  21. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012). [CrossRef] [PubMed]
  22. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011). [CrossRef] [PubMed]
  23. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat Commun4, 1944 (2013). [CrossRef] [PubMed]
  24. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011). [CrossRef] [PubMed]
  25. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, “Dispersive properties of optical filters for WDM systems,” IEEE J. Quantum Electron.34(8), 1390–1402 (1998). [CrossRef]
  26. L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011). [CrossRef] [PubMed]
  27. E. Chan, W. Zhang, and R. Minasian, “Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control,” J. Lightwave Technol.30(23), 3672–3678 (2012). [CrossRef]
  28. A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E, (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited