OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23295–23306

Differential receivers with highly -uniform MSM Germanium photodetectors capped by SiGe layer

Makoto Miura, Junichi Fujikata, Masataka Noguchi, Daisuke Okamoto, Tsuyoshi Horikawa, and Yasuhiko Arakawa  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23295-23306 (2013)
http://dx.doi.org/10.1364/OE.21.023295


View Full Text Article

Enhanced HTML    Acrobat PDF (2466 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Waveguide integrated MSM (metal-semiconductor-metal) Germanium (Ge) photodetectors (PDs) with a SiGe capping layer were exploited for silicon photonics integration. Under optimized epitaxial growth conditions, the capping layer passivated the Ge surface, resulting in sufficiently low dark current of the PDs. In addition, the PDs exhibited a narrower distribution of the dark current than PDs with a Si capping layer, probably due to the lower surface leakage current. Low-noise differential receivers with uniform MSM Ge PDs exhibiting 10 Gbps data transmission were realized.

© 2013 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects

ToC Category:
Detectors

History
Original Manuscript: August 15, 2013
Revised Manuscript: September 10, 2013
Manuscript Accepted: September 11, 2013
Published: September 24, 2013

Citation
Makoto Miura, Junichi Fujikata, Masataka Noguchi, Daisuke Okamoto, Tsuyoshi Horikawa, and Yasuhiko Arakawa, "Differential receivers with highly -uniform MSM Germanium photodetectors capped by SiGe layer," Opt. Express 21, 23295-23306 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, “Nanoelectronic and Nanophotonic Interconnect,” Proc. IEEE96(2), 230–247 (2008). [CrossRef]
  2. D. A. B. Miller, “Optical Interconnects to Silicon,” IEEE J. Sel. Top. Quantum Electron.6(6), 1312–1317 (2000). [CrossRef]
  3. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-State Circuits45(1), 235–248 (2010). [CrossRef]
  4. G. Li, X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, P. Dong, D. Feng, S. Liao, R. Shafiiha, M. Asghari, J. Yao, J. Shi, I. N. Shubin, D. Patil, F. Liu, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow-power silicon photonic interconnect for high-performance computing systems,” Proc. SPIE7607(1), 760703 (2010). [CrossRef]
  5. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron.17(3), 597–608 (2011). [CrossRef]
  6. X. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. Li, Y. Luo, H. D. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow Power 80 Gb/s Arrayed CMOS Silicon Photonic Transceivers for WDM Optical Links,” J. Lightwave Technol.30(4), 641–650 (2012). [CrossRef]
  7. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express19(6), 5172–5186 (2011). [CrossRef] [PubMed]
  8. Y. Urino, T. Shimizu, M. Okano, N. Hatori, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, S. Akiyama, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, J. Fujikata, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, T. Nakamura, and Y. Arakawa, “First demonstration of high density optical interconnects integrated with lasers, optical modulators, and photodetectors on single silicon substrate,” Opt. Express19(26), B159–B165 (2011). [CrossRef] [PubMed]
  9. C.-S. Li and H. S. Stone, “Differential Board/Backplane Optical Interconnects for High-speed Digital Systems Part I: Theory,” J. Lightwave Technol.11(7), 1234–1249 (1993).
  10. M. Aamer, A. Griol, A. Brimont, A. M. Gutierrez, P. Sanchis, and A. Håkansson, “Increased sensitivity through maximizing the extinction ratio of SOI delay-interferometer receiver for 10G DPSK,” Opt. Express20(13), 14698–14704 (2012). [CrossRef] [PubMed]
  11. B. Mikkelsen, C. Rasmussen, P. Mamyshev, and F. Liu, “Partial DPSK with excellent filter tolerance and OSNR sensitivity,” Electron. Lett.42(23), 1363–1364 (2006). [CrossRef]
  12. J. Fujikata, Y. Urino, S. Akiyama, T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, T. Yamamoto, T. Baba, T. Akagawa, T. Usuki, D. Okamoto, M. Miura, M. Noguchi, D. Shimura, H. Okayama, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, E. Saito, K. Wada, T. Nakamura, and Y. Arakawa, “Differential signal transmission in silicon-photonics integrated circuit for high density optical interconnects,” Proc of 8th IEEE International Conference on Group IV Photonics (GFP) 365–367 (2011). [CrossRef]
  13. K.-W. Ang, T.-Y. Liow, M.-B. Yu, Q. Fang, J. Song, G.-Q. Lo, and D.-L. Kwong, “Low Thermal Budget Monolithic Integration of Evanescent-Coupled Ge-on-SOI Photodetector on Si CMOS Platform,” IEEE J. Sel. Top. Quantum Electron.16(1), 106–113 (2010). [CrossRef]
  14. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “40Gb/s Ge-on-SOI waveguide photodetectors by selective Ge growth,” in Tech. Dig. Opt. Fiber Commun. Conf. (IEEE Photonics Society, 2008), paper OMK2. [CrossRef]
  15. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express19(11), 10967–10972 (2011). [CrossRef] [PubMed]
  16. D. Feng, S. Liao, P. Dong, N.-N. Feng, H. Liang, D. Zheng, C.-C. Kung, J. Fong, R. Shafiiha, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide,” Appl. Phys. Lett.95(26), 261105 (2009). [CrossRef]
  17. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J.-M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express20(2), 1096–1101 (2012). [CrossRef] [PubMed]
  18. G. Li, Y. Luo, X. Zheng, G. Masini, A. Mekis, S. Sahni, H. Thacker, J. Yao, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “Improving CMOS-compatible Germanium photodetectors,” Opt. Express20(24), 26345–26350 (2012). [CrossRef] [PubMed]
  19. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  20. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated high-speed MSM germanium waveguide photodetector,” Opt. Express18(5), 4986–4999 (2010). [CrossRef] [PubMed]
  21. J. Brouckaert, G. Roelkens, D. V. Thourhout, and R. Baets, “Compact InAlAs–InGaAs Metal–Semiconductor–Metal Photodetectors Integrated on Silicon-on-Insulator Waveguides,” IEEE Photon. Technol. Lett.19(19), 1484–1486 (2007). [CrossRef]
  22. J. D. Hwang and E. H. Zhang, “Effects of a a-Si:H layer on reducing the dark current of 1310 nm metal–germanium–metal photodetectors,” Thin Solid Films519(11), 3819–3821 (2011). [CrossRef]
  23. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature464(7285), 80–84 (2010). [CrossRef] [PubMed]
  24. A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett.89(25), 252110 (2006). [CrossRef]
  25. J. Oh, S. K. Banerjee, J. C. Campbell, J. Oh, S. K. Banerjee, and J. C. Campbell, “Metal–Germanium–Metal Photodetectors on Heteroepitaxial Ge-on-Si With Amorphous Ge Schottky Barrier Enhancement Layers,” IEEE Photon. Technol. Lett.16(2), 581–583 (2004). [CrossRef]
  26. J. D. Hwang, Y. H. Chen, C. Y. Kung, and J. C. Liu, “High Photo-to-Dark-Current Ratio in SiGe/Si Schottky-Barrier Photodetectors by Using an a-Si:H Cap Layer,” IEEE Trans. Electron. Dev.54(9), 2386–2391 (2007). [CrossRef]
  27. C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective Dark Current SuppressionWith Asymmetric MSM Photodetectors in Group IV Semiconductors,” IEEE Photon. Technol. Lett.15(11), 1585–1587 (2003). [CrossRef]
  28. J. D. Hwang, W. T. Chang, Y. H. Chen, C. Y. Kung, C. H. Hu, and P. S. Chen, “Suppressing the dark current of metal–semiconductor–metal SiGe/Si heterojunction photodetector by using asymmetric structure,” Thin Solid Films515(7–8), 3837–3839 (2007). [CrossRef]
  29. M. Takenaka, K. Morii, M. Sugiyama, Y. Nakano, and S. Takagi, “Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping,” Opt. Express20(8), 8718–8725 (2012). [CrossRef] [PubMed]
  30. J. Fujikata, M. Miura, M. Noguchi, D. Okamoto, T. Horikawa, and Y. Arakawa, “Si Waveguide-Integrated Metal–Semiconductor–Metal and p–i–n-Type Ge Photodiodes Using Si-Capping Layer,” Jpn. J. Appl. Phys.52(4), 04CG10 (2013). [CrossRef]
  31. N. Afshar-Hanaii, J. M. Bonar, A. G. R. Evans, G. J. Parker, C. M. K. Starbuck, and H. A. Kemhadjian, “Thick selective epitaxial growth of silicon at-960°C using silane only,” Microelectron. Eng.18(3), 237–246 (1992). [CrossRef]
  32. A. Ishitani, H. Kitajima, K. Tanno, H. Tsuya, N. Endo, N. Kasai, and Y. Kurogi, “Selective silicon epitaxial growth for device-isolation technology,” Microelectron. Eng.4(1), 3–33 (1986). [CrossRef]
  33. J. L. Regolini, D. Bensahel, J. Mercier, and E. Scheid, “Silicon selective epitaxial growth at reduced pressure and temperature,” J. Cryst. Growth96(3), 505–512 (1989). [CrossRef]
  34. J. Murota, N. Nakamura, M. Kato, N. Mikoshiba, and T. Ohmi, “Lowtemperature silicon selective deposition and epitaxy on silicon using the thermal decomposition of silane under ultraclean environment,” Appl. Phys. Lett.54(11), 1007–1009 (1989). [CrossRef]
  35. X. Tu, T.-Y. Liow, J. Song, M. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express19(19), 18029–18035 (2011). [CrossRef] [PubMed]
  36. N. Ozguven and P. C. McIntyre, “Silicon-germanium interdiffusion in high-germanium-content epitaxial heterostructures,” Appl. Phys. Lett.92(18), 181907 (2008). [CrossRef]
  37. S. J. Chey and D. G. Cahill, “Relaxation of Nanometer-Scale Surface Morphology,” in Dynamics of Crystal Surfaces and Interfaces, ed. P.M. Duxbury, and T.J. Pence, (Springer Science + Business Media, New York, 1997).
  38. S. M. Jang and R. Reif, “Effects of hydrogen and deposition pressure on Si1-xGex growth rate,” Appl. Phys. Lett.60(6), 707–709 (1992). [CrossRef]
  39. G. Masini, L. Colace, G. Assanto, H.-C. Luan, and L. C. Kimerling, “High-Performance p-i-n Ge on Si Photodetectors for the Near Infrared: From Model to Demonstration,” IEEE Trans. Electron. Dev.48(6), 1092–1096 (2001). [CrossRef]
  40. S. Akiyama, T. Baba, M. Imai, T. Akagawa, M. Takahashi, N. Hirayama, H. Takahashi, Y. Noguchi, H. Okayama, T. Horikawa, and T. Usuki, “12.5-Gb/s operation with 0.29-V•cm V(π)L using silicon Mach-Zehnder modulator based-on forward-biased pin diode,” Opt. Express20(3), 2911–2923 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited