OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23358–23364

Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip

Jia-Gui Wu, Ling-Juan Zhao, Zheng-Mao Wu, Dan Lu, Xi Tang, Zhu-Qiang Zhong, and Guang-Qiong Xia  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23358-23364 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1550 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A solitary monolithic integrated semiconductor laser (MISL) chip with a size of 780 micrometer is designed and fabricated for broadband chaos generation. Such a MISL chip consists of a DFB section, a phase section and an amplification section. Test results indicate that under suitable operation conditions, this laser chip can be driven into broadband chaos. The generated chaos covers an RF frequency range, limited by our measurement device, of 26.5GHz, and possesses significant dimension and complexity. Moreover, the routes into and out of chaos are also characterized through extracting variety dynamical states of temporal waveforms, phase portraits, RF spectra and statistical indicators.

© 2013 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 17, 2013
Revised Manuscript: August 9, 2013
Manuscript Accepted: September 16, 2013
Published: September 25, 2013

Jia-Gui Wu, Ling-Juan Zhao, Zheng-Mao Wu, Dan Lu, Xi Tang, Zhu-Qiang Zhong, and Guang-Qiong Xia, "Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip," Opt. Express 21, 23358-23364 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature438(7066), 343–346 (2005). [CrossRef] [PubMed]
  2. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics2(12), 728–732 (2008). [CrossRef]
  3. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett.103(2), 024102 (2009). [CrossRef] [PubMed]
  4. X. Z. Li and S. C. Chan, “Random bit generation using an optically injected semiconductor laser in chaos with oversampling,” Opt. Lett.37(11), 2163–2165 (2012). [CrossRef] [PubMed]
  5. F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron.40(6), 682–689 (2004). [CrossRef]
  6. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron.10(5), 991–997 (2004). [CrossRef]
  7. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, 2nd ed. (Springer-Verlag, 2008).
  8. J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: Theory and experiment,” IEEE J. Quantum Electron.28(1), 93–108 (1992). [CrossRef]
  9. C. R. Mirasso, J. Mulet, and C. Masoller, “Chaos shift-keying encryption in chaotic external-cavity semiconductor lasers using a single-receiver scheme,” IEEE Photon. Technol. Lett.14(4), 456–458 (2002). [CrossRef]
  10. Y. H. Hong, M. W. Lee, P. S. Spencer, and K. A. Shore, “Synchronization of chaos in unidirectionally coupled vertical-cavity surface-emitting semiconductor lasers,” Opt. Lett.29(11), 1215–1217 (2004). [CrossRef] [PubMed]
  11. S. Y. Xiang, W. Pan, L. Yan, B. Luo, X. Zou, N. Jiang, and K. Wen, “Influence of polarization mode competition on chaotic unpredictability of vertical-cavity surface-emitting lasers with polarization-rotated optical feedback,” Opt. Lett.36(3), 310–312 (2011). [CrossRef] [PubMed]
  12. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express17(22), 20124–20133 (2009). [CrossRef] [PubMed]
  13. F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE J. Quantum Electron.39(4), 562–568 (2003). [CrossRef]
  14. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A51(5), 4181–4185 (1995). [CrossRef] [PubMed]
  15. J. G. Wu, Z. M. Wu, G. Q. Xia, and G. Y. Feng, “Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system,” Opt. Express20(2), 1741–1753 (2012). [CrossRef] [PubMed]
  16. M. C. Soriano, J. García-Ojalvo, C. R. Mirasso, and I. Fischer, “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers,” Rev. Mod. Phys.85(1), 421–470 (2013). [CrossRef]
  17. O. V. Ushakov, N. Korneyev, M. Radziunas, H. J. Wünsche, and F. Henneberger, “Excitability of chaotic transients in a semiconductor laser,” Europhys. Lett.79(3), 30004 (2007). [CrossRef]
  18. S. Bauer, O. Brox, J. Kreissl, G. Sahin, and B. Sartorius, “Optical microwave source,” Electron. Lett.38(7), 334–335 (2002). [CrossRef]
  19. S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wünsche, and F. Henneberger, “Nonlinear dynamics of semiconductor lasers with active optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(1), 016206 (2004). [CrossRef] [PubMed]
  20. S. Schikora, H.-J. Wünsche, and F. Henneberger, “All-optical noninvasive chaos control of a semiconductor laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.78(2), 025202 (2008). [CrossRef] [PubMed]
  21. M. Yousefi, Y. Barbarin, S. Beri, E. A. Bente, M. K. Smit, R. Nötzel, and D. Lenstra, “New role for nonlinear dynamics and chaos in integrated semiconductor laser technology,” Phys. Rev. Lett.98(4), 044101 (2007). [CrossRef] [PubMed]
  22. A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and D. Syvridis, “Photonic integrated device for chaos applications in communications,” Phys. Rev. Lett.100(19), 194101 (2008). [CrossRef] [PubMed]
  23. A. Argyris, E. Grivas, M. Hamacher, A. Bogris, and D. Syvridis, “Chaos-on-a-chip secures data transmission in optical fiber links,” Opt. Express18(5), 5188–5198 (2010). [CrossRef] [PubMed]
  24. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express18(18), 18763–18768 (2010). [CrossRef] [PubMed]
  25. S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express19(7), 5713–5724 (2011). [CrossRef] [PubMed]
  26. J. Zhang, Y. Lu, and W. Wang, “Quantum well intermixing of InGaAsP QWs by impurity free vacancy diffusion using SiO2 encapsulation,” Chin. J. Semiconductors24(8), 785–788 (2003).
  27. Y. Sun, J. Q. Pan, L. J. Zhao, W. X. Chen, W. Wang, L. Wang, X. F. Zhao, and C. Y. Lou, “All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser,” J. Lightwave Technol.28(17), 2521–2525 (2010). [CrossRef]
  28. P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett.50(5), 346–349 (1983). [CrossRef]
  29. P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D9(1–2), 189–208 (1983). [CrossRef]
  30. P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A28(4), 2591–2593 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited