OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23365–23375

Directly phase-modulation-mode-locked doubly-resonant optical parametric oscillator

Kavita Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23365-23375 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1745 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present results on direct mode-locking of a doubly-resonant optical parametric oscillator (DRO) using an electro-optic phase modulator with low resonant frequency of 80 MHz as the single mode-locking element. Pumped by a cw laser at 532 nm and based on MgO:sPPLT as the nonlinear material, the DRO generates 533 ps pulses at 80 MHz and 471 ps pulses at 160 MHz. Stable train of mode-locked pulses is obtained at a modulation depth of 1.83 radians when the modulation frequency is precisely tuned and the cavity length is carefully adjusted. The effects of frequency detuning, modulation depth, input laser pump power, crystal temperature and position of modulator inside the cavity, on pulse duration and repetition rate have been studied. Operating at degeneracy, under mode-locked condition, the signal-idler spectrum exhibits a bandwidth of ~31 nm, and the spectrum has been investigated for different phase-matching temperatures. Mode-locked operation has been confirmed by second-harmonic-generation of the DRO output in a β-BaB2O4 crystal, where a 4 times enhancement in green power is observed compared to cw operation.

© 2013 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 21, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 16, 2013
Published: September 25, 2013

Kavita Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, "Directly phase-modulation-mode-locked doubly-resonant optical parametric oscillator," Opt. Express 21, 23365-23375 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Gurs and R. Muller, “Breitband-modulation durch steurung der emission eines optischen masers (Auskopple-modulation),” Phys. Lett.5(3), 179–181 (1963). [CrossRef]
  2. P. W. Smith, “Mode-locking of lasers,” Proc. IEEE58(9), 1342–1357 (1970). [CrossRef]
  3. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron.6(6), 1173–1185 (2000). [CrossRef]
  4. F. J. Duarte, Tunable laser applications (CRC, 2009).
  5. J. F. Ready, Industrial applications of lasers (Academic, 1997).
  6. S. C. Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, “Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser,” Appl. Opt.51(1), 15–20 (2012). [CrossRef] [PubMed]
  7. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express20(13), 13677–13683 (2012). [CrossRef] [PubMed]
  8. M. Ebrahim-Zadeh and I. T. Sorokina, eds., Mid-Infrared Coherent Sources and Applications, 1st ed. (Springer, 2007).
  9. M. Ebrahim-Zadeh, S. Chaitanya Kumar, A. Esteban-Martin, and G. K. Samanta, “Breakthroughs in Photonics 2012: Breakthroughs in Optical Parametric Oscillators,” IEEE Photon. J.5(2), 0700105 (2013). [CrossRef]
  10. M. Ebrahim-Zadeh, “Efficient Ultrafast Frequency Conversion Sources for the Visible and Ultraviolet Based on BiB3O6,” IEEE J. Sel. Top. Quantum Electron.13(3), 679–691 (2007). [CrossRef]
  11. N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M. Lefèbvre, and E. Rosencher, “Actively mode-locked optical parametric oscillator,” Opt. Lett.31(7), 972–974 (2006). [CrossRef] [PubMed]
  12. J. Khurgin, J.-M. Melkonian, A. Godard, M. Lefebvre, and E. Rosencher, “Passive mode locking of optical parametric oscillators: an efficient technique for generating sub-picosecond pulses,” Opt. Express16(7), 4804–4818 (2008). [CrossRef] [PubMed]
  13. J.-M. Melkonian, N. Forget, F. Bretenaker, C. Drag, M. Lefebvre, and E. Rosencher, “Active mode locking of continuous-wave doubly and singly resonant optical parametric oscillators,” Opt. Lett.32(12), 1701–1703 (2007). [CrossRef] [PubMed]
  14. S. E. Harris and R. Targ, “FM oscillation of the He-Ne laser,” Appl. Phys. Lett.5(10), 202–204 (1964). [CrossRef]
  15. E. O. Ammann, B. J. McMurtry, and M. Oshman, “Detailed experiments on Helium-Neon FM lasers,” IEEE J. Quantum Electron.1(6), 263–272 (1965). [CrossRef]
  16. D. J. Kuizenga, “Mode locking of the cw Dye laser,” Appl. Phys. Lett.19(8), 260–263 (1971). [CrossRef]
  17. G. T. Maker and A. I. Ferguson, “Frequency-modulation mode locking of a diode-pumped Nd:YAG laser,” Opt. Lett.14(15), 788–790 (1989). [CrossRef] [PubMed]
  18. D. W. Hughes, J. R. M. Barr, and D. C. Hanna, “Mode locking of a diode-laser-pumped Nd:glass laser by frequency modulation,” Opt. Lett.16(3), 147–149 (1991). [PubMed]
  19. R. Nagar, D. Abraham, N. Tessler, A. Fraenkel, G. Eisenstein, E. P. Ippen, U. Koren, and G. Raybon, “Frequency-modulation mode locking of a semiconductor laser,” Opt. Lett.16(22), 1750–1752 (1991). [CrossRef] [PubMed]
  20. R. P. Scott, C. V. Bennett, and B. H. Kolner, “AM and high-harmonic FM laser mode locking,” Appl. Opt.36(24), 5908–5912 (1997). [CrossRef] [PubMed]
  21. S. Longhi and P. Laporta, “Time-domain analysis of frequency modulation laser oscillation,” Appl. Phys. Lett.73(6), 720–722 (1998). [CrossRef]
  22. D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser. Pt.I:Theory,” IEEE J. Quantum Electron.6(11), 694–708 (1970). [CrossRef]
  23. A. Esteban-Martin, G. K. Samanta, K. Devi, S. C. Kumar, and M. Ebrahim-Zadeh, “Frequency-modulation-mode-locked optical parametric oscillator,” Opt. Lett.37(1), 115–117 (2012). [CrossRef] [PubMed]
  24. K. Devi, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, “Mode-locked, continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett.37(18), 3909–3911 (2012). [CrossRef] [PubMed]
  25. S. A. Diddams, L.-S. Ma, J. Ye, and J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett.24(23), 1747–1749 (1999). [CrossRef] [PubMed]
  26. S. T. Wong, T. Plettner, K. L. Vodopyanov, K. Urbanek, M. Digonnet, and R. L. Byer, “Self-phase-locked degenerate femtosecond optical parametric oscillator,” Opt. Lett.33(16), 1896–1898 (2008). [CrossRef] [PubMed]
  27. V. Ramaiah-Badarla, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Self-phase-locked degenerate femtosecond optical parametric oscillator based on BiB3O6,” Laser & Photon. Rev. doi: . [CrossRef]
  28. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B16(9), 1481–1498 (1999). [CrossRef]
  29. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express19(12), 11152–11169 (2011). [CrossRef] [PubMed]
  30. G. W. Hong and J. R. Whinnery, “Switching of phase-locked states in the intracavity phase-modulated He-Ne laser,” IEEE J. Quantum Electron.5(7), 367–376 (1969). [CrossRef]
  31. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  32. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19, 6296–6302 (2011).
  33. K. Devi, S. C. Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Antiresonant ring output-coupled continuous-wave optical parametric oscillator,” Opt. Express20(17), 19313–19321 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited