OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23376–23390

Silicon nitride based plasmonic components for CMOS back-end-of-line integration

Shiyang Zhu, G. Q. Lo, and D. L. Kwong  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23376-23390 (2013)
http://dx.doi.org/10.1364/OE.21.023376


View Full Text Article

Enhanced HTML    Acrobat PDF (3582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silicon nitride waveguides provide low propagation loss but weak mode confinement due to the relatively small refractive index contrast between the Si3N4 core and the SiO2 cladding. On the other hand, metal-insulator-metal (MIM) plasmonic waveguides offer strong mode confinement but large propagation loss. In this work, MIM-like plasmonic waveguides and passive devices based on horizontal Cu-Si3N4-Cu or Cu-SiO2-Si3N4-SiO2-Cu structures are integrated in the conventional Si3N4 waveguide circuits using standard CMOS backend processes, and are characterized around 1550-nm telecom wavelengths using the conventional fiber-waveguide-fiber method. The Cu-Si3N4(~100 nm)-Cu devices exhibit ~0.78-dB/μm propagation loss for straight waveguides, ~38% coupling efficiency with the conventional 1-μm-wide Si3N4 waveguide through a 2-μm-long taper coupler, ~0.2-dB bending loss for sharp 90° bends, and ~0.1-dB excess loss for ultracompact 1 × 2 and 1 × 4 power splitters. Inserting a ~10-nm SiO2 layer between the Si3N4 core and the Cu cover (i.e., the Cu-SiO2(~10 nm)-Si3N4(~100 nm)-SiO2(~10 nm)-Cu devices), the propagation loss and the coupling efficiency are improved to ~0.37 dB/μm and ~52% while the bending loss and the excess loss are degraded to ~3.2 dB and ~2.1 dB, respectively. These experimental results are roughly consistent with the numerical simulation results after taking the influence of possible imperfect fabrication into account. Ultracompact plasmonic ring resonators with 1-μm radius are demonstrated with an extinction ratio of ~18 dB and a quality factor of ~84, close to the theoretical prediction.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: June 11, 2013
Revised Manuscript: July 24, 2013
Manuscript Accepted: August 7, 2013
Published: September 25, 2013

Citation
Shiyang Zhu, G. Q. Lo, and D. L. Kwong, "Silicon nitride based plasmonic components for CMOS back-end-of-line integration," Opt. Express 21, 23376-23390 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Techn. Computing Sys.7(2), article no. 7 (2011).
  2. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011). [CrossRef] [PubMed]
  3. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  4. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010). [CrossRef]
  5. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012). [CrossRef] [PubMed]
  6. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  7. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008). [CrossRef]
  8. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett.31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  9. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  10. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012). [CrossRef] [PubMed]
  11. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Phase modulation in horizontal metal-insulator-silicon-insulator-metal plasmonic waveguides,” Opt. Express21(7), 8320–8330 (2013). [CrossRef] [PubMed]
  12. M. S. Kwon, J. S. Shin, S. Y. Shin, and W. G. Lee, “Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal,” Opt. Express20(20), 21875–21887 (2012). [CrossRef] [PubMed]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform,” IEEE Photon. Technol. Lett.24(14), 1224–1226 (2012). [CrossRef]
  14. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths,” Opt. Express20(14), 15232–15246 (2012). [CrossRef] [PubMed]
  15. H. S. Lee, C. Awada, S. Boutami, F. Charra, L. Douillard, and R. E. de Lamaestre, “Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface,” Opt. Express20(8), 8974–8981 (2012). [CrossRef] [PubMed]
  16. N. N. Feng, M. L. Brongersma, and L. D. Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron.43(6), 479–485 (2007). [CrossRef]
  17. X. T. Kong, W. G. Yan, Z. B. Li, and J. G. Tian, “Optical properties of metal-multi-insulator-metal plasmonic waveguides,” Opt. Express20(11), 12133–12146 (2012). [CrossRef] [PubMed]
  18. W. Cai, W. Shin, S. Fan, and M. L. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater.22(45), 5120–5124 (2010). [CrossRef] [PubMed]
  19. Z. Han, “Ultracompact plasmonic racetrack resonators in metal-insulator-metal waveguides,” Photon. and Nanostructures – Fundament. and Appl.8(3), 172–176 (2010). [CrossRef]
  20. A. Emboras, R. M. Briggs, A. Najar, S. Nambiar, C. Delacour, Ph. Grosse, E. Augendre, J. M. Fedeli, B. de Salva, H. A. Atwater, and R. Espiau de Lamaestre, “Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides,” Appl. Phys. Lett.101(25), 251117 (2012). [CrossRef]
  21. P. Neutens, P. Van Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009). [CrossRef]
  22. P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Opt. Express20(4), 3408–3423 (2012). [CrossRef] [PubMed]
  23. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express20(8), 8700–8709 (2012). [CrossRef] [PubMed]
  24. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett.10(6), 2111–2116 (2010). [CrossRef] [PubMed]
  25. http://www.lumerical.com .
  26. S. Roberts, “Optical properties of copper,” Phys. Rev.118(6), 1509–1518 (1960). [CrossRef]
  27. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of integrated horizontal Cu-Si3N4-Cu plasmonic waveguide and passive components,” Photonic Global Conf (PGC), Singapore, Dec. 13 (2012). [CrossRef]
  28. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface,” Appl. Phys. Lett.95(1), 013504 (2009). [CrossRef]
  29. Z. Han, V. Van, W. N. Herman, and P. T. Ho, “Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes,” Opt. Express17(15), 12678–12684 (2009). [CrossRef] [PubMed]
  30. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius,” IEEE Photon. Technol. Lett.23(24), 1896–1898 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (1919 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited