OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23391–23400

Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al2O3

Chang Goo Kang, Sang Kyung Lee, Sunhee Choe, Young Gon Lee, Chang-Lyoul Lee, and Byoung Hun Lee  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23391-23400 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The intrinsic photo-response of chemical vapor deposited (CVD) graphene photodetectors were investigated after eliminating the influence of photodesorption using an atomic layer deposited (ALD) Al2O3 passivation layer. A general model describing the intrinsic photocurrent generation in a graphene is developed using the relationship between the device dimensions and the level of intrinsic photocurrent under UV illumination.

© 2013 OSA

OCIS Codes
(040.5160) Detectors : Photodetectors
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: July 8, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: September 17, 2013
Published: September 25, 2013

Chang Goo Kang, Sang Kyung Lee, Sunhee Choe, Young Gon Lee, Chang-Lyoul Lee, and Byoung Hun Lee, "Intrinsic photocurrent characteristics of graphene photodetectors passivated with Al2O3," Opt. Express 21, 23391-23400 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  2. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  3. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6(5), 3677–3694 (2012). [CrossRef] [PubMed]
  4. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320(5873), 206–209 (2008). [CrossRef] [PubMed]
  5. T. Winzer, A. Knorr, and E. Malic, “Carrier multiplication in graphene,” Nano Lett.10(12), 4839–4843 (2010). [CrossRef] [PubMed]
  6. K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, “Photoexcitation cascade and multiple hot-carrier generation in graphene,” Nat. Phys.9(4), 248–252 (2013). [CrossRef]
  7. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun.146(9–10), 351–355 (2008). [CrossRef]
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  10. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010). [CrossRef] [PubMed]
  11. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” in Electron Devices Meet. Iedm 2012 IEEE Int., 33.8.1–33.8.3 (2012) [CrossRef]
  12. Y. Shi, W. Fang, K. Zhang, W. Zhang, and L.-J. Li, “Photoelectrical response in single-layer graphene transistors,” Small5(17), 2005–2011 (2009). [CrossRef] [PubMed]
  13. P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Y. Cheng, and H. Zhu, “Photoinduced molecular desorption from graphene films,” Appl. Phys. Lett.101(5), 053107 (2012). [CrossRef]
  14. Z. Luo, N. J. Pinto, Y. Davila, and A. T. Charlie Johnson, “Controlled doping of graphene using ultraviolet irradiation,” Appl. Phys. Lett.100(25), 253108 (2012). [CrossRef]
  15. R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, and H. Dai, “Molecular photodesorption from single-walled carbon nanotubes,” Appl. Phys. Lett.79(14), 2258–2260 (2001). [CrossRef]
  16. M. Kim, N. S. Safron, C. Huang, M. S. Arnold, and P. Gopalan, “Light-driven reversible modulation of doping in graphene,” Nano Lett.12(1), 182–187 (2012). [CrossRef] [PubMed]
  17. J. Park, Y. H. Ahn, and C. Ruiz-Vargas, “Imaging of photocurrent generation and collection in single-layer graphene,” Nano Lett.9(5), 1742–1746 (2009). [CrossRef] [PubMed]
  18. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science324(5932), 1312–1314 (2009). [CrossRef] [PubMed]
  19. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett.9(1), 30–35 (2009). [CrossRef] [PubMed]
  20. P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, “Probing charge transfer at surfaces using graphene transistors,” Nano Lett.11(1), 132–137 (2011). [CrossRef] [PubMed]
  21. S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett.10(12), 4944–4951 (2010). [CrossRef]
  22. C. M. Aguirre, P. L. Levesque, M. Paillet, F. Lapointe, B. C. St-Antoine, P. Desjardins, and R. Martel, “The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors,” Adv. Mater.21(30), 3087–3091 (2009). [CrossRef]
  23. C. G. Kang, Y. G. Lee, S. K. Lee, E. Park, C. Cho, S. K. Lim, H. J. Hwang, and B. H. Lee, “Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors,” Carbon53, 182–187 (2013). [CrossRef]
  24. K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on SiO2 with specific surface structures,” J. Appl. Phys.110(2), 024513 (2011). [CrossRef]
  25. T. Lohmann, K. von Klitzing, and J. H. Smet, “Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping,” Nano Lett.9(5), 1973–1979 (2009). [CrossRef] [PubMed]
  26. S. S. Sabri, P. L. Lévesque, C. M. Aguirre, J. Guillemette, R. Martel, and T. Szkopek, “Graphene field effect transistors with parylene gate dielectric,” Appl. Phys. Lett.95(24), 242104 (2009). [CrossRef]
  27. M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. V. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions,” Nano Lett.10(4), 1149–1153 (2010). [CrossRef] [PubMed]
  28. Y. G. Lee, C. G. Kang, C. Cho, Y. Kim, H. J. Hwang, and B. H. Lee, “Quantitative analysis of hysteretic reactions at the interface of graphene and SiO2 using the short pulse I–V method,” Carbon60, 453–460 (2013). [CrossRef]
  29. C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett.92(7), 071901 (2008). [CrossRef]
  30. F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y. M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, “Photocurrent imaging and efficient photon detection in a graphene transistor,” Nano Lett.9(3), 1039–1044 (2009). [CrossRef] [PubMed]
  31. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett.101(2), 026803 (2008). [CrossRef] [PubMed]
  32. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009). [CrossRef] [PubMed]
  33. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010). [CrossRef]
  34. H. E. Romero, N. Shen, P. Joshi, H. R. Gutierrez, S. A. Tadigadapa, J. O. Sofo, and P. C. Eklund, “n-Type behavior of graphene supported on Si/SiO2 substrates,” ACS Nano2(10), 2037–2044 (2008). [CrossRef] [PubMed]
  35. A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett.11(7), 2804–2808 (2011). [CrossRef] [PubMed]
  36. K.-J. Yee, J.-H. Kim, M. H. Jung, B. H. Hong, and K.-J. Kong, “Ultrafast modulation of optical transitions in monolayer and multilayer graphene,” Carbon49(14), 4781–4785 (2011). [CrossRef]
  37. M. Freitag, T. Low, F. Xia, and P. Avouris, “Photoconductivity of biased graphene,” Nat. Photonics7(1), 53–59 (2012). [CrossRef]
  38. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater.14(2), 158–160 (2002). [CrossRef]
  39. W. Park, G. Jo, W.-K. Hong, J. Yoon, M. Choe, S. Lee, Y. Ji, G. Kim, Y. H. Kahng, K. Lee, D. Wang, and T. Lee, “Enhancement in the photodetection of ZnO nanowires by introducing surface-roughness-induced traps,” Nanotechnology22(20), 205204 (2011). [CrossRef] [PubMed]
  40. J. Zhang, N. Xi, H. Chen, K. W. C. Lai, G. Li, and U. C. Wejinya, “Design, manufacturing, and testing of single-carbon-nanotube-based infrared sensors,” IEEE Trans. NanoTechnol.8(2), 245–251 (2009). [CrossRef]
  41. L. C. Liou and B. Nabet, “Simple analytical model of bias dependence of the photocurrent of metal-semiconductor-metal photodetectors,” Appl. Opt.35(1), 15–23 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited