OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23401–23409

Two-photon quantum interference in integrated multi-mode interference devices

Konstantinos Poulios, Daniel Fry, Alberto Politi, Nur Ismail, Kerstin Wörhoff, Jeremy L. O’Brien, and Mark G. Thompson  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23401-23409 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multi-mode interference (MMI) devices fabricated in silicon oxynitride (SiON) with a refractive index contrast of 2.4% provide a highly compact and stable platform for multi-photon non-classical interference. MMI devices can introduce which-path information for photons propagating in the multi-mode section which can result in degradation of this non-classical interference. We theoretically derive the visibility of quantum interference of two photons injected in a MMI device and predict near unity visibility for compact SiON devices. We complement the theoretical results by experimentally demonstrating visibilities of up to 97.7% in 2×2 MMI devices without the requirement of narrow-band photons.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: July 9, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: September 2, 2013
Published: September 25, 2013

Konstantinos Poulios, Daniel Fry, Alberto Politi, Nur Ismail, Kerstin Wörhoff, Jeremy L. O’Brien, and Mark G. Thompson, "Two-photon quantum interference in integrated multi-mode interference devices," Opt. Express 21, 23401-23409 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1, 165–171 (2007). [CrossRef]
  2. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the Standard Quantum Limit with Four-Entangled Photons,” Science316, 726–729 (2007). [CrossRef] [PubMed]
  3. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London)464, 45–53 (2010). [CrossRef]
  4. R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys.21, 467–488 (1982). [CrossRef]
  5. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3, 687–695 (2009). [CrossRef]
  6. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  7. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science320, 646–649 (2008). [CrossRef] [PubMed]
  8. A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett.97, 211109 (2010). [CrossRef]
  9. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12, 1004–1009 (1994). [CrossRef]
  10. A. Peruzzo, A. Laing, A. Politi, T. Rudolph, and J. L. O’Brien, “Multimode quantum interference of photons in multiport integrated devices,” Nat. Commun.2, 224 (2011). [CrossRef] [PubMed]
  11. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys.14, 045003 (2012). [CrossRef]
  12. E. Poem, Y. Gilead, and Y. Silberberg, “Two-Photon Path-Entangled States in Multimode Waveguides,” Phys. Rev. Lett.108, 153602 (2012). [CrossRef] [PubMed]
  13. O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am.63, 416–419 (1973). [CrossRef]
  14. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging:principles and applications,” J. Lightwave Technol.13, 615–627 (1995). [CrossRef]
  15. Z. Jin and G.-D. Peng, “Optimal design of N× N silica multimode interference couplers — an improved approach,” Opt. Commun.241, 299–308 (2004). [CrossRef]
  16. M. Rajarajan, B. M. A. Rahman, and K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol.17, 243–248 (1999). [CrossRef]
  17. S. D. Barrett and T. M. Stace, “Fault Tolerant Quantum Computation with Very High Threshold for Loss Errors,” Phys. Rev. Lett.105, 200502 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited