OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23441–23449

Generation of pseudonondiffracting optical beams with superlattice structures

C. H. Tsou, T. W. Wu, J. C. Tung, H. C. Liang, P. H. Tuan, and Y. F. Chen  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23441-23449 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an approach to generate a class of pseudonondiffracting optical beams with the transverse shapes related to the superlattice structures. For constructing the superlattice waves, we consider a coherent superposition of two identical lattice waves with a specific relative angle in the azimuthal direction. We theoretically derive the general conditions of the relative angles for superlattice waves. In the experiment, a mask with multiple apertures which fulfill the conditions for superlattice structures is utilized to generate the pseudonondiffracting superlattice beams. With the analytical wave functions and experimental patterns, the pseudonondiffracting optical beams with a variety of structures can be generated systematically.

© 2013 OSA

OCIS Codes
(070.3185) Fourier optics and signal processing : Invariant optical fields
(050.4865) Diffraction and gratings : Optical vortices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: August 8, 2013
Revised Manuscript: September 16, 2013
Manuscript Accepted: September 17, 2013
Published: September 25, 2013

C. H. Tsou, T. W. Wu, J. C. Tung, H. C. Liang, P. H. Tuan, and Y. F. Chen, "Generation of pseudonondiffracting optical beams with superlattice structures," Opt. Express 21, 23441-23449 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A4(4), 651–654 (1987). [CrossRef]
  2. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58(15), 1499–1501 (1987). [CrossRef] [PubMed]
  3. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature419(6903), 145–147 (2002). [CrossRef] [PubMed]
  4. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett.28(8), 657–659 (2003). [CrossRef] [PubMed]
  5. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun.197(4-6), 239–245 (2001). [CrossRef]
  6. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef] [PubMed]
  7. C. Yu, M. R. Wang, A. J. Varela, and B. Chen, “High-density non-diffracting beam array for optical interconnection,” Opt. Commun.177(1-6), 369–376 (2000). [CrossRef]
  8. Z. Bouchal, “Nondiffracting optical beams-physical properties, experiments, and applications,” Czech. J. Phys.53(7), 537–578 (2003). [CrossRef]
  9. M. Boguslawski, P. Rose, and C. Denz, “Increasing the structural variety of discrete nondiffracting wave fields,” Phys. Rev. A84(1), 013832 (2011). [CrossRef]
  10. M. Boguslawski, P. Rose, and C. Denz, “Nondiffracting kagome lattice,” Appl. Phys. Lett.98(6), 061111 (2011). [CrossRef]
  11. P. Rose, M. Boguslawski, and C. Denz, “Nonlinear lattice structures based on families of complex nondiffracting beams,” New J. Phys.14(3), 033018 (2012). [CrossRef]
  12. Y. F. Chen, H. C. Liang, Y. C. Lin, Y. S. Tzeng, K. W. Su, and K. F. Huang, “Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity,” Phys. Rev. A83(5), 053813 (2011). [CrossRef]
  13. A. Kudrolli, B. Pier, and J. P. Gollub, Physica, “Superlattice patterns in surface waves,” Physica D123(1-4), 99–111 (1998).
  14. M. Silber and M. R. E. Proctor, “Nonlinear Competition between Small and Large Hexagonal Patterns,” Phys. Rev. Lett.81(12), 2450–2453 (1998). [CrossRef]
  15. H. Arbell and J. Fineberg, “Spatial and Temporal Dynamics of Two Interacting Modesin Parametrically Driven Surface Waves,” Phys. Rev. Lett.81(20), 4384–4387 (1998). [CrossRef]
  16. H. J. Pi, S. Park, J. Lee, and K. J. Lee, “Superlattice, Rhombus, Square, And Hexagonal Standing Waves In Magnetically Driven Ferrofluid Surface,” Phys. Rev. Lett.84(23), 5316–5319 (2000). [CrossRef] [PubMed]
  17. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci.336(1605), 165–190 (1974). [CrossRef]
  18. M. S. Soskin and M. V. Vasnetsov, “Singular Optics,” Prog. Opt.42, 219–276 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited