OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23471–23485

Theoretical description of bifacial optical nanomaterials

P. Grahn, A. Shevchenko, and M. Kaivola  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23471-23485 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2026 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In general, optical nanomaterials composed of noncentrosymmetric nanoscatterers are bifacial, meaning that two counter-propagating waves inside the material behave differently. Thus far a practical theory for the description of such materials has been missing. Herein, we present a theory that connects the design of the bifacial nanomaterial’s “atoms” with the refractive index and wave impedance of the medium. We also introduce generalized Fresnel coefficients and investigate the role of electromagnetic multipoles on the bifaciality. We find that in any material two counter-propagating waves must experience the same refractive index, but their impedances can differ. The model is demonstrated in practice by the design of a nanomaterial slab with one of its facets being optically reflective, while the other being totally non-reflective.

© 2013 OSA

OCIS Codes
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design

ToC Category:

Original Manuscript: August 22, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 14, 2013
Published: September 25, 2013

P. Grahn, A. Shevchenko, and M. Kaivola, "Theoretical description of bifacial optical nanomaterials," Opt. Express 21, 23471-23485 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, “Retrieving effective parameters for metamaterials at oblique incidence,” Phys. Rev. B77, 195328 (2008). [CrossRef]
  2. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65, 195104 (2002). [CrossRef]
  3. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Retrieving effective parameters for quasiplanar chiral metamaterials,” Appl. Phys. Lett.93, 233106 (2008). [CrossRef]
  4. E. Pshenay-Severin, U. Hübner, C. Menzel, C. Helgert, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, and T. Pertsch, “Double-element metamaterial with negative index at near-infrared wavelengths,” Opt. Lett.34, 1678–1680 (2009). [CrossRef] [PubMed]
  5. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470, 369–373 (2011). [CrossRef] [PubMed]
  6. M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B75, 075119 (2007). [CrossRef]
  7. H.-K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express15, 1076–1083 (2007). [CrossRef] [PubMed]
  8. C. Rockstuhl, C. Menzel, T. Paul, and F. Lederer, “Optical activity in chiral media composed of three-dimensional metallic meta-atoms,” Phys. Rev. B79, 035321 (2009). [CrossRef]
  9. T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Anomalous refraction, diffraction, and imaging in metamaterials,” Phys. Rev. B79, 115430 (2009). [CrossRef]
  10. Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt.15, 023001 (2013). [CrossRef]
  11. B. Gompf, B. Krausz, B. Frank, and M. Dressel, “k-dependent optics of nanostructures: Spatial dispersion of metallic nanorings and split-ring resonators,” Phys. Rev. B86, 075462 (2012). [CrossRef]
  12. P. Grahn, A. Shevchenko, and M. Kaivola, “Multipole polarizability of a nanodimer in optical waves,” J. Europ. Opt. Soc. Rap. Public.8, 13009 (2013). [CrossRef]
  13. T. Pakizeh and M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett.9, 2343–2349 (2009). [CrossRef] [PubMed]
  14. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, and M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B25, 659–667 (2008). [CrossRef]
  15. T. Pakizeh, “Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths,” J. Opt. Soc. Am. B29, 2446–2452 (2012). [CrossRef]
  16. T. J. Antosiewicz, S. P. Apell, C. Wadell, and C. Langhammer, “Absorption enhancement in lossy transition metal elements of plasmonic nanosandwiches,” J. Phys. Chem. C116, 20522–20529 (2012). [CrossRef]
  17. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun.2, 481 (2011). [CrossRef] [PubMed]
  18. S. H. Alavi Lavasani and T. Pakizeh, “Color-switched directional ultracompact optical nanoantennas,” J. Opt. Soc. Am. B29, 1361–1366 (2012). [CrossRef]
  19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater.8, 758–762 (2009). [CrossRef]
  20. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011). [CrossRef]
  21. N. Liu, M. Hentschel, T. Weiss, A. Paul Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332, 1407–1410 (2011). [CrossRef] [PubMed]
  22. P. Grahn, A. Shevchenko, and M. Kaivola, “Interferometric description of optical nanomaterials,” arXiv:1303.6432 (2013).
  23. R. Alaee, C. Menzel, A. Banas, K. Banas, S. Xu, H. Chen, H. O. Moser, F. Lederer, and C. Rockstuhl, “Propagation of electromagnetic fields in bulk terahertz metamaterials: A combined experimental and theoretical study,” Phys. Rev. B87, 075110 (2013). [CrossRef]
  24. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express20, 7165–7172 (2012). [CrossRef] [PubMed]
  25. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E71, 036617 (2005). [CrossRef]
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New Jersey, 2007), 2nd ed.
  27. E. B. Graham and R. E. Raab, “Reflection from noncentrosymmetric uniaxial crystals: a multipole approach,” J. Opt. Soc. Am. A13, 1239–1248 (1996). [CrossRef]
  28. E. B. Graham and R. E. Raab, “Multipole solution for the macroscopic electromagnetic boundary conditions at a vacuum–dielectric interface,” Proc. R. Soc. Lond. A456, 1193–1215 (2000). [CrossRef]
  29. Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Phot. Nano. Fund. Appl.10, 329–336 (2012). [CrossRef]
  30. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E79, 026610 (2009). [CrossRef]
  31. J. H. Lee, Y.-W. Song, K. H. Hwang, J. G. Lee, J. Ha, and D.-S. Zang, “Optically bifacial thin-film wire-grid polarizers with nano-patterns of a graded metal-dielectric composite layer,” Opt. Express16, 16867–16876 (2008). [PubMed]
  32. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Nonreciprocal reflection of a subwavelength hole array,” Opt. Lett.28, 1906–1908 (2003). [CrossRef] [PubMed]
  33. M. Sarrazin and J. P. Vigneron, “Nonreciprocal optical reflection from a bidimensional array of subwavelength holes in a metallic film,” Phys. Rev. B70, 193409 (2004). [CrossRef]
  34. P. Grahn, A. Shevchenko, and M. Kaivola, “Electromagnetic multipole theory for optical nanomaterials,” New J. Phys.14, 093033 (2012). [CrossRef]
  35. D. G. Dudley, Mathematical Foundations for Electromagnetic Theory (IEEE Press, New York, 1994). [CrossRef]
  36. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun.4, 1750 (2013). [CrossRef] [PubMed]
  37. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science330, 1510–1512 (2010). [CrossRef] [PubMed]
  38. Y. Zeng, H.-T. Chen, and D. A. R. Dalvit, “The role of magnetic dipoles and non-zero-order Bragg waves in metamaterial perfect absorbers,” Opt. Express21, 3540–3546 (2013). [CrossRef] [PubMed]
  39. P. Grahn, A. Shevchenko, and M. Kaivola, “Electric dipole-free interaction of visible light with pairs of subwavelength-size silver particles,” Phys. Rev. B86, 035419 (2012). [CrossRef]
  40. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited