OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23486–23497

Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green’s functions

Yi-Cong Yu, Jing-Feng Liu, Xiao-Lu Zhuo, Gengyan Chen, Chong-Jun Jin, and Xue-Hua Wang  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23486-23497 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2888 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the light emission characteristics for single two level quantum dot (QD) in a realistic photonic crystal (PC) L3 cavity based upon the local coupling strength between the QD and cavity together with the Green’s function in which the propagation function related to the position of the detector is taken into account. We find for a PC cavity that the line shape of the propagation function in frequency domain is identical to that of the cavity and independent on the detector's position. We confirm that this identity is not influenced by the horizontal decay of the cavity. Furthermore, it is revealed that the vacuum fluorescence spectrum of the coupled system never give the triplet in strong coupling regime. Our work demonstrates that the experimental spectral-triplet in coupled system of single QD and PC cavity cannot be individually understood by vacuum Rabi splitting without including other physics mechanism.

© 2013 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Quantum Optics

Original Manuscript: March 5, 2013
Revised Manuscript: June 21, 2013
Manuscript Accepted: September 3, 2013
Published: September 26, 2013

Yi-Cong Yu, Jing-Feng Liu, Xiao-Lu Zhuo, Gengyan Chen, Chong-Jun Jin, and Xue-Hua Wang, "Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green’s functions," Opt. Express 21, 23486-23497 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science298(5597), 1372–1377 (2002). [CrossRef] [PubMed]
  2. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  3. C. Monroe, “Quantum information processing with atoms and photons,” Nature416(6877), 238–246 (2002). [CrossRef] [PubMed]
  4. J. L. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009). [CrossRef]
  5. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432(7014), 197–200 (2004). [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  7. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95(6), 067401 (2005). [CrossRef] [PubMed]
  8. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  9. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature450(7171), 857–861 (2007). [CrossRef] [PubMed]
  10. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73(3), 565–582 (2001). [CrossRef]
  11. R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett.100(24), 240404 (2008). [CrossRef] [PubMed]
  12. R. Johne, N. A. Gippius, and G. Malpuech, “Entangled photons from a strongly coupled quantum dot-cavity system,” Phys. Rev. B79(15), 155317 (2009). [CrossRef]
  13. E. del Valle, F. P. Laussy, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. II. Fermions,” Phys. Rev. B79(23), 235326 (2009). [CrossRef]
  14. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys.6(4), 279–283 (2010). [CrossRef]
  15. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett.96(11), 117401 (2006). [CrossRef] [PubMed]
  16. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98(11), 117402 (2007). [CrossRef] [PubMed]
  17. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys.4(11), 859–863 (2008). [CrossRef]
  18. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007). [CrossRef]
  19. M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Quantum dot spectroscopy using cavity quantum electrodynamics,” Phys. Rev. Lett.101(22), 226808 (2008). [CrossRef] [PubMed]
  20. M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B80(15), 155326 (2009). [CrossRef]
  21. M. Yamaguchi, T. Asano, and S. Noda, “Third emission mechanism in solid-state nanocavity quantum electrodynamics,” Rep. Prog. Phys.75(9), 096401 (2012). [CrossRef] [PubMed]
  22. S. Hughes and P. Yao, “Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system,” Opt. Express17(5), 3322–3330 (2009). [CrossRef] [PubMed]
  23. T. Ochiai, J.-i. Inoue, and K. Sakoda, “Spontaneous emission from a two-level atom in a bisphere microcavity,” Phys. Rev. A74(6), 063818 (2006). [CrossRef]
  24. X.-H. Wang, B.-Y. Gu, R. Wang, and H.-Q. Xu, “Decay kinetic properties of atoms in photonic crystals with absolute gaps,” Phys. Rev. Lett.91(11), 113904 (2003). [CrossRef] [PubMed]
  25. M. Wubs, L. G. Suttorp, and A. Lagendijk, “Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics,” Phys. Rev. A70(5), 053823 (2004). [CrossRef]
  26. C. T. Tai, Dyadic Green Functions in Electromagnetic Theory (IEEE, 1993).
  27. H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, “Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators,” Phys. Rev. A40(10), 5516–5519 (1989). [CrossRef] [PubMed]
  28. L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60(19), 13276–13279 (1999). [CrossRef]
  29. G. Chen, Y.-C. Yu, X.-L. Zhuo, Y.-G. Huang, H. Jiang, J.-F. Liu, C.-J. Jin, and X.-H. Wang, “Ab initio determination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities,” Phys. Rev. B87(19), 195138 (2013). [CrossRef]
  30. O. Painter, J. Vučkovič, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B16(2), 275–285 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited