OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23498–23510

Novel D-shape LSPR fiber sensor based on nano-metal strips

Yue Jing He  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23498-23510 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4094 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, a novel D-shaped localized surface plasmon resonance (LSPR) fiber sensor was introduced. The construction of this sensor involved etching of a single-mode fiber on the cladding layer and core layer, followed by plating using nano-metal strips. The design and calculations of the entire sensor were based on a numerical simulation method combining the finite element method (FEM) and the eigenmode expansion method (EEM). By using graphical representations of the algorithm results, the excitation of the LSPR was clearly observed. The finished D-shaped LSPR fiber sensor possesses several excellent properties, including a short length (2494.4301 μm), high resolution (approximately 35 dB), and high sensitivity (approximately 20183.333 nm/RIU). In addition, compared with LPG-SPR fiber sensor, the framework provides three advantages, namely, a fabrication process that is compatible with semiconductor fabrication, as well as the low-temperature cross-talk and high-temperature stability of surface grating.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:

Original Manuscript: May 21, 2013
Revised Manuscript: August 10, 2013
Manuscript Accepted: September 13, 2013
Published: September 26, 2013

Yue Jing He, "Novel D-shape LSPR fiber sensor based on nano-metal strips," Opt. Express 21, 23498-23510 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. J. He, “Investigation of LPG-SPR sensors using the finite element method and eigenmode expansion method,” Opt. Express21(12), 13875–13895 (2013). [CrossRef] [PubMed]
  2. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt.50(14), 2032–2036 (2011). [CrossRef] [PubMed]
  3. J. Cao, E. K. Galbraith, T. Sun, and K. T. V. Grattan, “Cross-Comparison of Surface Plasmon Resonance-Based Optical Fiber Sensors with Different Coating Structures,” IEEE Sens. J.12(7), 2355–2361 (2012). [CrossRef]
  4. X. Yu, S. Zhang, Y. Zhang, H. P. Ho, P. Shum, H. Liu, and D. Liu, “An efficient approach for investigating surface plasmon resonance in asymmetric optical fibers based on birefringence analysis,” Opt. Express18(17), 17950–17957 (2010). [CrossRef] [PubMed]
  5. M. Gu, P. Bai, and E. P. Li, “Enhancing the Reception of Propagating Surface Plasmons Using a Nanoantenna,” IEEE Photon. Technol. Lett.22(4), 245–247 (2010). [CrossRef]
  6. L. Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors,” Opt. Express18(11), 11464–11471 (2010). [CrossRef] [PubMed]
  7. K. H. An, M. Shtein, and K. P. Pipe, “Surface plasmon mediated energy transfer of electrically-pumped excitons,” Opt. Express18(5), 4041–4048 (2010). [CrossRef] [PubMed]
  8. J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B26(12), B139–B142 (2009). [CrossRef]
  9. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express17(18), 16081–16091 (2009). [CrossRef] [PubMed]
  10. B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express17(25), 23254–23264 (2009). [CrossRef] [PubMed]
  11. D. Choi, I. M. Lee, J. Jung, J. Park, J. H. Han, and B. Lee, “Metallic-Grating-Based Interconnector Between Surface Plasmon Plariton Waveguides,” J. Lightwave Technol.27(24), 5675–5680 (2009). [CrossRef]
  12. Y. C. Lu, W. P. Huang, and S. S. Jian, “Influence of Mode Loss on the Feasibility of Grating-Assisted Optical Fiber Surface Plasmon Resonance Refractive Index Sensor,” J. Lightwave Technol.27(21), 4804–4808 (2009). [CrossRef]
  13. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett.34(24), 3890–3892 (2009). [CrossRef] [PubMed]
  14. Y. J. He, Y. L. Lo, and J. F. Huang, “Optical-fiber surface-plasmon-resonance sensor employing long-period fiber gratings in multiplexing,” J. Opt. Soc. Am. B23(5), 801–811 (2006). [CrossRef]
  15. G. Nemova and R. Kashyap, “Modeling of Plasmon-Polariton Refractive-Index Hollow Core Fiber Sensors Assisted by a Fiber Bragg grating,” J. Lightwave Technol.24(10), 3789–3796 (2006). [CrossRef]
  16. Ó. Esteban, R. Alonso, M. C. Navarrete, and A. González-Cano, “Surface Plasmon Excitation in Fiber-Optics Sensors: A Novel Theoretical Approach,” J. Lightwave Technol.20(3), 448–453 (2002). [CrossRef]
  17. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express20(19), 21693–21701 (2012). [CrossRef] [PubMed]
  18. R. Dutta, R. Bharadwaj, S. Mukherji, and T. Kundu, “Study of localized surface-plasmon-resonance-based optical fiber sensor,” Appl. Opt.50(25), E138–E144 (2011). [CrossRef]
  19. Y. Lin, Y. Zou, and R. G. Lindquist, “A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing,” Biomed. Opt. Express2(3), 478–484 (2011). [CrossRef] [PubMed]
  20. C. Y. Tsai, S. P. Lu, J. W. Lin, and P. T. Lee, “High sensitivity plasmonic index sensor using slablike gold nanoring arrays,” Appl. Phys. Lett.98(15), 153108 (2011). [CrossRef] [PubMed]
  21. S. K. Srivastava and B. D. Gupta, “Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor,” J. Opt. Soc. Am. A27(7), 1743–1749 (2010). [CrossRef] [PubMed]
  22. R. Marty, G. Baffou, A. Arbouet, C. Girard, and R. Quidant, “Charge distribution induced inside complex plasmonic nanoparticles,” Opt. Express18(3), 3035–3044 (2010). [CrossRef] [PubMed]
  23. M. J. Kofke, D. H. Waldeck, and G. C. Walker, “Composite nanoparticle nanoslit arrays: a novel platform for LSPR mediated subwavelength optical transmission,” Opt. Express18(8), 7705–7713 (2010). [CrossRef] [PubMed]
  24. W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructure,” Opt. Express18(2), 843–853 (2010). [CrossRef]
  25. V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosens. Bioelectron.24(9), 2804–2809 (2009). [CrossRef] [PubMed]
  26. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express18(1), 165–172 (2010). [CrossRef] [PubMed]
  27. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A25(3), 725–735 (2008). [CrossRef] [PubMed]
  28. S. K. Srivastava, R. K. Verma, and B. D. Gupta, “Theoretical modeling of a localized surface plasmon resonance based intensity modulated fiber optic refractive index sensor,” Appl. Opt.48(19), 3796–3802 (2009). [CrossRef] [PubMed]
  29. D. F. G. Gallagher and T. P. Felici, “Emgenmode expansion methods for simulation of optical propagation in photonics-Pros and cons,” Proc. SPIE4987, 69–82 (2003). [CrossRef]
  30. M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express17(7), 5867–5878 (2009). [CrossRef] [PubMed]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  32. J. Renger, “Excitation, interaction, and scattering of localized and propagating surface polaritons,” Ph.D. Thesis., Technical University, Dresden, (2006).
  33. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev.35(11), 1084–1094 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited