OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23522–23530

Long time exposure digital in-line holography for 3-D particle trajectography

D. Lebrun, L. Méès, D. Fréchou, S. Coëtmellec, M. Brunel, and D. Allano  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23522-23530 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One advantage of digital in-line holography is the ability for a user to know the 3-D location of a moving particle recorded at a given time. When the time exposure is much larger than the time required for grabbing the particle image at a given location, the diffraction pattern is spread along the trajectory of this particle. This can be seen as a convolution between the diffraction pattern and a blurring function resulting from the motion of the particle during the camera exposure. This article shows that the reconstruction of holograms recorded under such conditions exhibit traces that could be processed for extracting 3D trajectories.

© 2013 OSA

OCIS Codes
(090.0090) Holography : Holography
(100.3010) Image processing : Image reconstruction techniques
(100.6890) Image processing : Three-dimensional image processing
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: June 27, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: September 4, 2013
Published: September 26, 2013

D. Lebrun, L. Méès, D. Fréchou, S. Coëtmellec, M. Brunel, and D. Allano, "Long time exposure digital in-line holography for 3-D particle trajectography," Opt. Express 21, 23522-23530 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967). [CrossRef]
  2. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt.33(2), 179–181 (1994). [CrossRef] [PubMed]
  3. P. Picart and J. Li, Digital holography (John Wiley & Sons Ed. 2012)
  4. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt.42(5), 827–833 (2003). [CrossRef] [PubMed]
  5. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.45(5), 836–850 (2006). [CrossRef] [PubMed]
  6. A. El Mallahi, C. Minetti, and F. Dubois, “Automated three-dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources,” Appl. Opt.52(1), A68–A80 (2013). [CrossRef] [PubMed]
  7. F. Soulez, L. Denis, E. Thiébaut, C. Fournier, and C. Goepfert, “Inverse problem approach in Particle Digital Holography: out-of-field particle detection made possible,” J. Opt. Soc. Am. A24(12), 3708–3716 (2007). [CrossRef] [PubMed]
  8. F. Lamadie, L. Bruel, and M. Himbert, “Digital holographic measurements of liquid-liquid two-phase flows,” Opt. Lasers Eng.50(12), 1716–1725 (2012). [CrossRef]
  9. S. Coëtmellec, D. Lebrun, and C. Özkul, “Characterization of diffraction patterns directly from in-line holograms with the fractional Fourier Transform,” Appl. Opt.41(2), 312–319 (2002). [CrossRef] [PubMed]
  10. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett.28(3), 164–166 (2003). [CrossRef] [PubMed]
  11. C. Buraga-Lefebvre, S. Coëtmellec, D. Lebrun, and C. Özkul, “Application of wavelet transform to hologram analysis: three dimensional location of particles,” Opt. Lasers Eng.33(6), 409–421 (2000). [CrossRef]
  12. M. Malek, D. Allano, S. Coëtmellec, C. Özkul, and D. Lebrun, “Digital in-line holography for three dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol.15(4), 699–705 (2004). [CrossRef]
  13. F. Nicolas, S. Coëtmellec, M. Brunel, and D. Lebrun, “Digital In-line holography with a sub-picosecond laser beam,” Opt. Commun.268(1), 27–33 (2006). [CrossRef]
  14. M. Brunel, H. Shen, S. Coëtmellec, and D. Lebrun, “Extended ABCD matrix formalism for the description of femtosecond diffraction patterns; application to femtosecond Digital In-line Holography with anamorphic optical systems,” Appl. Opt.51(8), 1137–1148 (2012). [CrossRef] [PubMed]
  15. N. Salah, G. Godard, D. Lebrun, P. Paranthoen, D. Allano, and S. Coetmellec, “Application of multiple exposure digital in-line holography to particle tracking in a Benard-von Karman vortex flow,” Meas. Sci. Technol.19(7), 074001 (2008). [CrossRef]
  16. M. Heydt, P. Divós, M. Grunze, and A. Rosenhahn, “Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces,” Eur Phys J E Soft Matter30(2), 141–148 (2009). [CrossRef] [PubMed]
  17. J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett.37(4), 752–754 (2012). [CrossRef] [PubMed]
  18. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006). [CrossRef] [PubMed]
  19. L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic particle-streak velocimetry,” Opt. Express19(5), 4393–4398 (2011), doi:. [CrossRef] [PubMed]
  20. D. Lebrun, D. Allano, L. Méès, F. Walle, F. Corbin, R. Boucheron, and D. Fréchou, “Size measurement of bubbles in a cavitation tunnel by digital in-line holography,” Appl. Opt.50(34), H1–H9 (2011). [CrossRef] [PubMed]
  21. L. Onural, “Diffraction from a wavelet point of view,” Opt. Lett.18(11), 846–848 (1993). [CrossRef] [PubMed]
  22. D. Lebrun, C. E. Touil, and C. Özkul, “Methods for the deconvolution of defocused-image pairs recorded separately on two CCD cameras: application to particle sizing,” Appl. Opt.35(32), 6375–6381 (1996). [CrossRef] [PubMed]
  23. D. Lebrun, A. M. Benkouider, S. Coëtmellec, and M. Malek, “Particle field digital holographic reconstruction in arbitrary tilted planes,” Opt. Express11(3), 224–229 (2003). [CrossRef] [PubMed]
  24. G. E. P. Box and M. E. Muller, “A note on the generation of random normal deviates,” Ann. Math. Stat.29(2), 610–611 (1958). [CrossRef]
  25. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol.15(4), 673–685 (2004). [CrossRef]
  26. F. Slimani, G. Gréhan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt.23(22), 4140–4148 (1984). [CrossRef] [PubMed]
  27. S. Pu, D. Lebrun, D. Allano, B. Patte-Rouland, M. Malek, and C. Cen, “Particle field characterization by digital in-line holography: 3D location and sizing,” Exp. Fluids39(1), 1–9 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited