OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23592–23603

Silica microtoroid resonator sensor with monolithically integrated waveguides

Xiaomin Zhang and Andrea M Armani  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23592-23603 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2962 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Due to their wide operating range, silica toroidal whispering gallery mode microresonators have enabled numerous applications from fundamental physics to lasing and sensing. However, the integration of a waveguide with these microresonators has not been achieved which limits their integration with additional on-chip components. Here, we demonstrate a novel approach for monolithically integrating a silica microtoroid with an on-chip waveguide to form a fully integrated microtoroid-waveguide system with quality factors in excess of 4 million. Similar to the conventional toroidal cavities, power-independent operation is demonstrated. UV and temperature sensing experiments are also performed using the monolithically integrated microtoroid-waveguide system.

© 2013 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Integrated Optics

Original Manuscript: August 5, 2013
Revised Manuscript: September 15, 2013
Manuscript Accepted: September 17, 2013
Published: September 26, 2013

Xiaomin Zhang and Andrea M Armani, "Silica microtoroid resonator sensor with monolithically integrated waveguides," Opt. Express 21, 23592-23603 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010). [CrossRef] [PubMed]
  2. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005). [CrossRef]
  3. H.-S. Choi and A. M. Armani, “Thermal non-linear effects in hybrid optical microresonators,” Appl. Phys. Lett.97(22), 223306 (2010). [CrossRef]
  4. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319(5866), 1062–1065 (2008). [CrossRef] [PubMed]
  5. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.99(7), 073701 (2011). [CrossRef]
  6. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010). [CrossRef]
  7. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009). [CrossRef] [PubMed]
  8. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett.77(2), 184–186 (2000). [CrossRef]
  9. H.-S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express17(25), 23265–23271 (2009). [CrossRef] [PubMed]
  10. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B17(6), 1051–1057 (2000). [CrossRef]
  11. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421(6926), 925–928 (2003). [CrossRef] [PubMed]
  12. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85(1), 74–77 (2000). [CrossRef] [PubMed]
  13. I. S. Grudinin, V. S. Ilchenko, and L. Maleki, “Ultrahigh optical Q factors of crystalline resonators in the linear regime,” Phys. Rev. A74(6), 063806 (2006). [CrossRef]
  14. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91(4), 043902 (2003). [CrossRef] [PubMed]
  15. F. Ramiro-Manzano, N. Prtljaga, L. Pavesi, G. Pucker, and M. Ghulinyan, “A fully integrated high-Q whispering-gallery wedge resonator,” Opt. Express20(20), 22934–22942 (2012). [CrossRef] [PubMed]
  16. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  17. M. Soltani, S. Yegnanarayanan, and A. Adibi, “Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics,” Opt. Express15(8), 4694–4704 (2007). [CrossRef] [PubMed]
  18. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  19. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012). [CrossRef] [PubMed]
  20. C. Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique,” J. Vac. Sci. Technol. B20(6), 2862–2866 (2002). [CrossRef]
  21. A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011). [CrossRef] [PubMed]
  22. X. Zhang, M. Harrison, A. Harker, and A. M. Armani, “Serpentine low loss trapezoidal silica waveguides on silicon,” Opt. Express20(20), 22298–22307 (2012). [CrossRef] [PubMed]
  23. X. Zhang and A. M. Armani, “Suspended bridge-like silica 2×2 beam splitter on silicon,” Opt. Lett.36(15), 3012–3014 (2011). [CrossRef] [PubMed]
  24. T. C. Hansuek Lee, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun3, 867 (2012).
  25. L. A. Donohue, J. Hopkins, R. Barnett, A. Newton, and A. Barker, “Developments in Si and SiO2 etching for MEMS based optical applications,” Proc. SPIE5347, 44–53 (2004). [CrossRef]
  26. A. J. Maker and A. M. Armani, “Fabrication of silica ultra high quality factor microresonators,” in JoVE, (2012), p. e4164.
  27. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004). [CrossRef]
  28. P. H. Hart, S. Gorman, and J. J. Finlay-Jones, “Modulation of the immune system by UV radiation: more than just the effects of vitamin D?” Nat. Rev. Immunol.11(9), 584–596 (2011). [CrossRef] [PubMed]
  29. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2010).
  30. T. Yoshie, L. Tang, and S.-Y. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors (Basel)11(12), 1972–1991 (2011). [CrossRef] [PubMed]
  31. A. J. Maker and A. M. Armani, “Heterodyned toroidal microlaser sensor,” Appl. Phys. Lett.103(12), 123302 (2013). [CrossRef]
  32. B. R. Reddy, I. Kamma, and P. Kommidi, “Optical sensing techniques for temperature measurement,” Appl. Opt.52(4), B33–B39 (2013). [PubMed]
  33. L. Wang, B. Zhou, C. Shu, and S. He, “Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor,” Opt. Lett.36(3), 427–429 (2011). [CrossRef] [PubMed]
  34. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt.46(33), 8118–8133 (2007). [CrossRef] [PubMed]
  35. A. Harker, S. Mehrabani, and A. M. Armani, “Ultraviolet light detection using an optical microcavity,” Opt. Lett.38(17), 3422–3425 (2013). [CrossRef] [PubMed]
  36. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst (Lond.)136, 227–236 (2011). [CrossRef] [PubMed]
  37. L. N. He, S. K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6(7), 428–432 (2011). [CrossRef] [PubMed]
  38. J. L. Dominguez-Juarez, G. Kozyreff, and J. Martorell, “Whispering gallery microresonators for second harmonic light generation from a low number of small molecules,” Nat Commun2, 254 (2011). [CrossRef] [PubMed]
  39. M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, “Robust optical delay lines with topological protection,” Nat. Phys.7(11), 907–912 (2011). [CrossRef]
  40. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature482(7383), 63–67 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited