OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23619–23630

Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy

H. L. Chen and L. Gao  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23619-23630 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We establish full-wave electromagnetic scattering theory to study the near-field and far-field spectra of radially anisotropic coated nanowires. For coated nanowires containing radially anisotropic core and plasmonic shell, unconventional Fano resonances are predicted due to the interference between dipole cloaking mode and dipole resonant mode. In contrast to Z-shaped Fano profile with small modulation depth for coated nanospheres in Argyropoulos et al, Phys. Rev. Lett. 108, 263905 (2012), we predict S-shaped Fano profile with high depth for coated nanowires. An off-resonance field enhancement in the radially anisotropic core is found at the Fano dip, and its’ magnitude is approximately the same as that the one at the low-energy resonant wavelength. Furthermore, with our adjustment of the inner size and the permittivity elements of the anisotropic core, tunable Fano-like profiles can be realized. These results may be useful for potential applications in different fields of nanotechnology.

© 2013 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: August 14, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 16, 2013
Published: September 26, 2013

H. L. Chen and L. Gao, "Tunablity of the unconventional Fano resonances in coated nanowires with radial anisotropy," Opt. Express 21, 23619-23630 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878(1961). [CrossRef]
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298(2010). [CrossRef]
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9, 707–715(2010). [CrossRef]
  4. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988(2008). [CrossRef] [PubMed]
  5. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano3(3), 643–652(2009). [CrossRef] [PubMed]
  6. Z. Y. Fang, J. Y. Cai, Z. B. Yan, P. Nordlander, N. J. Halas, and X. Zhu, “Removing a wedge from a metallic nanodisk reveals a Fano resonance,” Nano Lett.11(10), 4475–4479(2011). [CrossRef] [PubMed]
  7. K. C. Woo, L. Shao, H. J. Chen, Y. Liang, J. F. Wang, and H. Q. Lin, “Universal scaling and Fano resonance in the plasmon coupling between gold nanorods,” ACS Nano5(7), 5976–5986(2011). [CrossRef] [PubMed]
  8. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P. F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett.101(19), 197401(2008). [CrossRef] [PubMed]
  9. Z. J. Yang, Z. S. Zhang, W. Zhang, Z. H. Hao, and Q. Q. Wang, “Twinned Fano interferences induced by hybridized plasmons in Au-Ag nanorod heterodimers,” Appl. Phys. Lett.96(13), 131113(2010). [CrossRef]
  10. S. Sheikholeslami, Y. W. Jun, P. K. Jain, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett.10(7), 2655–2660(2010). [CrossRef] [PubMed]
  11. O. Pena-Rodriguez, U. Pal, M. Campoy-Quiles, L. Rodriguez-Fernandez, M. Garriga, and M. I. Alonso, “Enhanced Fano resonance in asymmetrical Au:Ag heterodimers,” J. Phys. Chem. C115(14), 6410–6414(2011). [CrossRef]
  12. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701(2010). [CrossRef] [PubMed]
  13. A. E. Miroshnichenko, “Off-resonance field enhancement by spherical nanoshells,” Phys. Rev. A81(5), 053818 (2010). [CrossRef]
  14. O. Pena-Rodriguez and U. Pal, “Au/Ag core-shell nanoparticles: efficient all-plasmonic Fano-resonance generators,” Nanoscale3(9), 3609–3612(2011). [CrossRef] [PubMed]
  15. H. J. Chen, L. Shao, Y. C. Man, C. M. Zhao, J. F. Wang, and B. C. Yang, “Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking,” Small8(10), 1503–1509(2012). [CrossRef] [PubMed]
  16. D. J. Wu, S. M. Liang, and X. J. Liu, “A tunable Fano resonance in silver nanoshell with a spherically anisotropic core,” J. Chem. Phys.136(3), 034502(2012). [CrossRef] [PubMed]
  17. M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, “Light scattering by a finite obstacle and Fano resonances,” Phys. Rev. Lett.100(4), 043903(2008). [CrossRef] [PubMed]
  18. B. S. Luk’yanchuk, A. E. Miroshnichenko, and Y. S. Kivshar, “Fano resonances and topological optics: an interplay of far- and near-field interference phenomena,” J. Opt.15(7), 073001 (2013). [CrossRef]
  19. M. I. Tribelksy, A. E. Miroshnichenko, and Y. S. Kivshar, “Unconventional Fano resonances in light scattering by small particles,” Europhys. Lett.97(4), 44005(2012). [CrossRef]
  20. T. J. Arruda, A. S. Martinez, and F. A. Pinheiro, “Unconventional Fano effect and off-resonance field enhancement in plasmonic coated spheres,” Phys. Rev. A87(4), 043841(2013). [CrossRef]
  21. M. Kociak, O. Stephan, L. Henrard, V. Charbois, A. Rothschild, R. Tenne, and C. Colliex, “Experimental evidence of surface-plasmon coupling in anisotropic hollow nanoparticles,” Phys. Rev. Lett.87(7), 075501(2001). [CrossRef] [PubMed]
  22. D. Taverna, M. Kociak, V. Charbois, and L. Henrard, “Electron energy-loss spectrum of an electron passing near a locally anisotropic nanotube,” Phys. Rev. B66(23), 235419(2002). [CrossRef]
  23. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108(21), 213903(2012). [CrossRef] [PubMed]
  24. Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” EPL100(3), 34005(2012). [CrossRef]
  25. S. Xu, X. X. Cheng, R. R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. L. Huang, X. M. Zhang, F. X. Yu, B. L. Zhang, and H. S. Chen, “Experimental Demonstration of a free-space cylindrical cloak without superluminal propagation,” Phys. Rev. Lett.109(22), 223903(2012). [CrossRef]
  26. X. Sheng, H.S. Chen, B. L. Zhang, B. I. Wu, and J. A. Kong, “Route to low-scattering cylindrical cloaks with finite permittivity and permeability,” Phys. Rev. A79(15), 155122(2009).
  27. Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homogeneous cylindrically anisotropic cylinders,” Plasmonics5(3), 251–258(2010). [CrossRef]
  28. Y. W. Jin, D. L. Gao, and L. Gao, “Plasmonic resonant light scattering by a cylinder with radial anisotropy,” Prog. Electromag. Res.106, 335–347(2010). [CrossRef]
  29. H. L. Chen and L. Gao, “Anomalous electromagnetic scattering from radially anisotropic nanowires,” Phys. Rev. A86(3), 033825(2012). [CrossRef]
  30. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905(2012). [CrossRef] [PubMed]
  31. X. P. Yu and L. Gao, “Nonlinear dielectric response in partially resonant composites with radial dielectric anisotropy,” Phys. Lett. A359(5), 516–522(2006). [CrossRef]
  32. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422(2003). [CrossRef] [PubMed]
  33. J. J. Zhang and A. Zayats, “Multiple Fano resonances in single-layere nonconcentric core-shell nanostructures,” Opt. Express21(7), 8426–8436(2013). [CrossRef] [PubMed]
  34. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6, 737–748(2012). [CrossRef]
  35. J. Butet, G. Bachelier, I. Russier-Antoine, F. Bertorelle, A. Mosset, N. Lascoux, C. Jonin, E. Benichou, and P. F. Brevet, “Nonlinear Fano profiles in the optical second-harmonic generation from silver nanoparticles,” Phys. Rev. B86(7), 075430(2012). [CrossRef]
  36. T. J. Arruda, F. A. Pinheiro, and A. S. Martinez, “Electromagnetic energy within coated spheres containing dispersive metamaterials,” J. Opt.14(6), 065101(2012). [CrossRef]
  37. T. J. Arruda and A. S. Martinez, “Electromagnetic energy within a magnetic infinite cylinder and scattering properties for oblique incidence,” J. Opt. Soc. Am. A27(7), 1679–1686(2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited