OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23631–23639

Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs

Xiaodong Yang, Changyu Hu, Huixu Deng, Daniel Rosenmann, David A. Czaplewski, and Jie Gao  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23631-23639 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (4223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-infrared epsilon-near-zero (ENZ) metamaterial slabs based on silver-germanium (Ag-Ge) multilayers are experimentally demonstrated. Transmission, reflection and absorption spectra are characterized and used to determine the complex refractive indices and the effective permittivities of the ENZ metamaterial slabs, which match the results obtained from both the numerical simulations and the optical nonlocalities analysis. A rapid post-annealing process is used to reduce the collision frequency of silver and therefore decrease the optical absorption loss of multilayer metamaterial slabs. Furthermore, multilayer grating structures are studied to enhance the optical transmission and also tune the location of ENZ wavelength. The demonstrated near-infrared ENZ multilayer metamaterial slabs are important for realizing many exotic applications, such as phase front shaping and engineering of photonic density of states.

© 2013 OSA

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.3918) Materials : Metamaterials
(310.4165) Thin films : Multilayer design
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: August 20, 2013
Revised Manuscript: September 12, 2013
Manuscript Accepted: September 16, 2013
Published: September 26, 2013

Xiaodong Yang, Changyu Hu, Huixu Deng, Daniel Rosenmann, David A. Czaplewski, and Jie Gao, "Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs," Opt. Express 21, 23631-23639 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of Ԑ and µ,” Sov. Phys. Usp.10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  3. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97(15), 157403 (2006). [CrossRef] [PubMed]
  4. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76(24), 245109 (2007). [CrossRef]
  5. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100(2), 023903 (2008). [CrossRef] [PubMed]
  6. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100(3), 033903 (2008). [CrossRef] [PubMed]
  7. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89(21), 213902 (2002). [CrossRef] [PubMed]
  8. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75(15), 155410 (2007). [CrossRef]
  9. R. Pollès, E. Centeno, J. Arlandis, and A. Moreau, “Self-collimation and focusing effects in zero-average index metamaterials,” Opt. Express19(7), 6149–6154 (2011). [CrossRef] [PubMed]
  10. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005). [CrossRef] [PubMed]
  11. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.75(3), 036603 (2007). [CrossRef] [PubMed]
  12. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett.102(23), 233901 (2009). [CrossRef] [PubMed]
  13. A. Alù and N. Engheta, “Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging,” Phys. Rev. Lett.105(26), 263906 (2010). [CrossRef] [PubMed]
  14. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  15. M. G. Silveirinha and N. Engheta, “Transporting an image through a subwavelength hole,” Phys. Rev. Lett.102(10), 103902 (2009). [CrossRef] [PubMed]
  16. C. Argyropoulos, P. Chen, G. D’Aguanno, N. Engheta, and A. Alu, “Boosting optical nonlinearities in ε-near-zero plasmonic channels,” Phys. Rev. B85(4), 045129 (2012). [CrossRef]
  17. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett.110(1), 013902 (2013). [CrossRef] [PubMed]
  18. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011). [CrossRef] [PubMed]
  19. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express1(6), 1090–1099 (2011). [CrossRef]
  20. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, 1999).
  21. A. Alù and N. Engheta, “Boosting molecular fluorescence with a plasmonic nanolauncher,” Phys. Rev. Lett.103(4), 043902 (2009). [CrossRef] [PubMed]
  22. R. J. Pollard, A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A. Wurtz, A. V. Zayats, and V. A. Podolskiy, “Optical nonlocalities and additional waves in epsilon-near-zero metamaterials,” Phys. Rev. Lett.102(12), 127405 (2009). [CrossRef] [PubMed]
  23. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Yu. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett.97(13), 131107 (2010). [CrossRef]
  24. M. J. Roberts, S. Feng, M. Moran, and L. Johnson, “Effective permittivity near zero in nanolaminates of silver and amorphous polycarbonate,” Journal of Nanophotonics4(1), 043511 (2010). [CrossRef]
  25. G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett.101(24), 241107 (2012). [CrossRef]
  26. J. Gao, L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, “Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers,” Appl. Phys. Lett.103(5), 051111 (2013). [CrossRef]
  27. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  28. T. Xu, A. Agrawal, M. Abashin, K. J. Chau, and H. J. Lezec, “All-angle negative refraction and active flat lensing of ultraviolet light,” Nature497(7450), 470–474 (2013). [CrossRef] [PubMed]
  29. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  30. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photonics6(7), 450–454 (2012). [CrossRef]
  31. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological Transitions in Metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  32. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466(7307), 735–738 (2010). [CrossRef] [PubMed]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  34. SOPRA N&K database, http://www.sopra-sa.com .
  35. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett.90(19), 191109 (2007). [CrossRef]
  36. A. A. Orlov, P. M. Voroshilov, P. A. Belov, and Y. S. Kivshar, “Engineered optical nonlocality in nanostructured metamaterials,” Phys. Rev. B84(4), 045424 (2011). [CrossRef]
  37. E. Nichelatti, “Complex refractive index of a slab from reflectance and transmittance: analytical solution,” J. Opt. A, Pure Appl. Opt.4(4), 400–403 (2002). [CrossRef]
  38. S. Y. El-Zaiat, “Determination of the complex refractive index of a thick slab material from its spectral reflectance and transmittance at normal incidence,” Optik (Stuttg.)124(2), 157–161 (2013). [CrossRef]
  39. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004). [CrossRef] [PubMed]
  40. S. Feng, “Graphical retrieval method for orthorhombic anisotropic materials,” Opt. Express18(16), 17009–17019 (2010). [CrossRef] [PubMed]
  41. A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci.557(1–3), 269–280 (2004). [CrossRef]
  42. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express18(5), 5124–5134 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited