OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23640–23654

Finite-size limitations on Quality Factor of guided resonance modes in 2D Photonic Crystals

Jon Olav Grepstad, Martin M. Greve, Bodil Holst, Ib-Rune Johansen, Olav Solgaard, and Aasmund Sudbø  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23640-23654 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3524 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-Q guided resonance modes in two-dimensional photonic crystals, enable high field intensity in small volumes that can be exploited to realize high performance sensors. We show through simulations and experiments how the Q-factor of guided resonance modes varies with the size of the photonic crystal, and that this variation is due to loss caused by scattering of in-plane propagating modes at the lattice boundary and coupling of incident light to fully guided modes that exist in the homogeneous slab outside the lattice boundary. A photonic crystal with reflecting boundaries, realized by Bragg mirrors with a band gap for in-plane propagating modes, has been designed to suppress these edge effects. The new design represents a way around the fundamental limitation on Q-factors for guided resonances in finite photonic crystals. Results are presented for both simulated and fabricated structures.

© 2013 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(220.0220) Optical design and fabrication : Optical design and fabrication
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 1, 2013
Revised Manuscript: August 28, 2013
Manuscript Accepted: September 15, 2013
Published: September 27, 2013

Jon Olav Grepstad, Martin M. Greve, Bodil Holst, Ib-Rune Johansen, Olav Solgaard, and Aasmund Sudbø, "Finite-size limitations on Quality Factor of guided resonance modes in 2D Photonic Crystals," Opt. Express 21, 23640-23654 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett.61, 1022–1024 (1992). [CrossRef]
  2. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron.33, 2038–2059 (1997). [CrossRef]
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002). [CrossRef]
  4. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73, 115126 (2006). [CrossRef]
  5. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (hcg) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron.15, 1485–1499 (2009). [CrossRef]
  6. C. Chase, Y. Rao, W. Hofmann, and C.-J. Chang-Hasnain, “1550 nm high contrast grating vcsel,” Opt. Express18, 15461–15466 (2010). [CrossRef] [PubMed]
  7. W. Hofmann, “Evolution of high-speed long-wavelength vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol.26, 014011 (2011). [CrossRef]
  8. B. Park, J. Provine, I. W. Jung, R. T. Howe, and O. Solgaard, “Photonic crystal fiber tip sensor for high-temperature measurement,” IEEE Sens. J.11, 2643–2648 (2011). [CrossRef]
  9. O. C. Akkaya, O. Akkaya, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Modeling and demonstration of thermally stable high-sensitivity reproducible acoustic sensors,” J. Microelectromech. Syst.21, 1347–1356 (2012). [CrossRef]
  10. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012). [CrossRef] [PubMed]
  11. B. T. Cunningham and R. C. Zangar, “Photonic crystal enhanced fluorescence for early breast cancer biomarker detection,” J. Biophotonics5, 617–628 (2012). [CrossRef]
  12. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003). [CrossRef]
  13. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40, 1511–1518 (2004). [CrossRef]
  14. R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt.39, 3649–3653 (2000). [CrossRef]
  15. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A17, 1241–1249 (2000). [CrossRef]
  16. J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, and D. L. Brundrett, “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A18, 1912–1928 (2001). [CrossRef]
  17. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljacic, and O. Shapira, “Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109, 067401 (2012). [CrossRef] [PubMed]
  18. S. Ura, S. Murata, Y. Awatsuji, and K. Kintaka, “Design of resonance grating coupler,” Opt. Express16, 12207–12213 (2008). [CrossRef] [PubMed]
  19. Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-q resonator using a subwavelength high-contrast grating,” Opt. Express16, 17282–17287 (2008). [CrossRef] [PubMed]
  20. K. Kintaka, T. Majima, J. Inoue, K. Hatanaka, J. Nishii, and S. Ura, “Cavity-resonator-integrated guided-mode resonance filter for aperture miniaturization,” Opt. Express20, 1444–1449 (2012). [CrossRef] [PubMed]
  21. N. C. Lindquist, A. Lesuffleur, and S.-H. Oh, “Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding bragg mirrors,” Phys. Rev. B76, 155109 (2007). [CrossRef]
  22. S.-H. Kwon, S. Kim, S.-K. Kim, Y.-H. Lee, and S.-B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express12, 5356–5361 (2004). [CrossRef] [PubMed]
  23. P. Nedel, X. Letartre, C. Seassal, A. Auffeves, L. Ferrier, E. Drouard, A. Rahmani, and P. Viktorovitch, “Design and investigation of surface addressable photonic crystal cavity confined band edge modes for quantum photonic devices,” Opt. Express19, 5014–5025 (2011). [CrossRef] [PubMed]
  24. K. Kintaka, T. Majima, K. Hatanaka, J. Inoue, and S. Ura, “Polarization-independent guided-mode resonance filter with cross-integrated waveguide resonators,” Opt. Lett.37, 3264–3266 (2012). [CrossRef] [PubMed]
  25. P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. Fedeli, “3d harnessing of light with 2.5d photonic crystals,” Laser Photon. Rev.4, 401–413 (2010). [CrossRef]
  26. J. D. Joannopoulos and S. Johnson, Photonic Crystals, Molding the Flow of Light Second Edition (Princeton University Press, 2008). Chapters 5 and 10.
  27. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63, 125107 (2001). [CrossRef]
  28. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, c. Seassal, and P. Viktorovitch, “Switching devices with spatial and spectral resolution combining photonic crystal and moems structures,” J. Lightwave Technol.21, 1691 (2003). [CrossRef]
  29. J.-P. Berenger, “Numerical reflection from fdtd-pmls: a comparison of the split pml with the unsplit and cfs pmls,” IEEE Trans. Antennas Propag.50, 258–265 (2002). [CrossRef]
  30. J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. and Tech. B31, 06F402 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited