OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23687–23694

Analytical theory for the nonlinear optical response of a Kerr-type standing-wave cavity side-coupling to a MIM waveguide

Ye Liu, Fei Zhou, and Qinghe Mao  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23687-23694 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (874 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article, an analytical theory to describe the nonlinear dynamic response characteristics of a typical SPP waveguide-cavity structure formed by a Kerr-type standing-wave cavity side-coupling to a metal-insulator-metal (MIM) waveguide is proposed by combining the temporal coupled mode theory and the Kerr nonlinearity. With the analytical theory, the optical bistability with the hysteresis behavior is successfully predicted, and the optical bistability evolutions and its dynamic physical mechanism are also phenomenologically analyzed. Moreover, the influence of the quality factors Q0 and Q1 on the first-turnning point (FTP) power of optical bistability and the bistable region width, the approaches to decrease the FTP power and to broaden the bistable region are also discussed in detail with our analytical theory. This work can help us understand the physical mechanism of the nonlinear dynamical response at nanoscale, and may be useful to design nonlinear nanophotonic systems for applications in ultra-compact all-optical devices and storages.

© 2013 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.3270) Nonlinear optics : Kerr effect
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

Original Manuscript: August 2, 2013
Revised Manuscript: September 13, 2013
Manuscript Accepted: September 13, 2013
Published: September 27, 2013

Ye Liu, Fei Zhou, and Qinghe Mao, "Analytical theory for the nonlinear optical response of a Kerr-type standing-wave cavity side-coupling to a MIM waveguide," Opt. Express 21, 23687-23694 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003). [CrossRef] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005). [CrossRef]
  3. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength scale localization,” Phys. Rev. B73, 035407 (2006). [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics4, 83–90 (2010). [CrossRef]
  5. D. Y. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt.12, 015002 (2010). [CrossRef]
  6. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75, 245405 (2007). [CrossRef]
  7. G. X. Wang, H. Lu, and X. M. Liu, “Trapping of surface plasmon waves in graded grating waveguide system,” Appl. Phys. Lett.101, 013111 (2012). [CrossRef]
  8. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type MIM optical filter,” Opt. Express17, 7549–7555 (2009). [CrossRef]
  9. Y. Hwang, J. Kim, and H. Y. Park, “Frequency selective metal-insulator-metal splitters for surface plasmons,” Opt. Comm.284, 4778–4781 (2011). [CrossRef]
  10. A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. D. Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” New J. Phys.11, 103020 (2009). [CrossRef]
  11. G. X. Wang, H. Lu, X. M. Liu, D. Mao, and L. N. Duan, “Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime,” Opt. Express19, 3513–3518 (2011). [CrossRef] [PubMed]
  12. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev.2, 125–135 (2008). [CrossRef]
  13. J. Tao, Q. J. Wang, and X. G. Huang, “All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material,” Plasmonics6, 753–759 (2011). [CrossRef]
  14. N. Nozhat and N. Granpayeh, “Switching power reduction in the ultra-compact Kerr nonlinear plasmonic directional coupler,” Opt. Comm.285, 1555–1559 (2012). [CrossRef]
  15. H. Lu, X. M. Liu, L. R. Wang, Y. K. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express19, 2910–2915 (2011). [CrossRef] [PubMed]
  16. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2009). [CrossRef]
  17. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit,” Nano Lett.11, 2933–2937 (2011). [CrossRef] [PubMed]
  18. J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, “Optical bistability enhanced by highly localized bulk plasmon polariton modes in subwavelength metal-nonlinear dielectric multilayer structure,” Appl. Phys. Lett.94, 081117 (2009). [CrossRef]
  19. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical theory of optical bistability in plasmonic nanoresonators,” J. Opt. Soc. Am. B28, 2820–2826 (2011). [CrossRef]
  20. X. S. Lin, J. H. Yan, Y. B. Zheng, L. J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structrues,” Opt. Express19, 9594–9599 (2009). [CrossRef]
  21. X. L. Wang, H. Q. Jiang, J. X. Chen, P. Wang, Y. H. Lu, and H. Ming, “Optical bistability effect in plasmonic racetrack resonator with high extinction ratio,” Opt. Express19, 19415–19421 (2011). [CrossRef] [PubMed]
  22. H. Lu, X. M. Liu, Y. K. Gong, D. Mao, and L. R. Wang, “Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities,” Opt. Express19, 12885–12890 (2011). [CrossRef] [PubMed]
  23. Y. Liu, F. Zhou, B. Yao, J. Cao, and Q. H. Mao, “High-extinction-ratio and low-insertion-loss plasmonic filter with coherent coupled nano-cavity array in a MIM waveguide,” Plasmonics8, 1035–1041 (2013). [CrossRef]
  24. L. Liu, X. Hao, Y. T. Ye, J. X. Liu, Z. L. Chen, Y. C. Song, Y. Luo, J. Zhang, and L. Tan, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012). [CrossRef]
  25. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc., 1999).
  26. R. S. Irving, Integers, Polynomials, and Rings (Springer, 2004).
  27. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Systematical research on the characteristics of a vertical coupled Fabry-Perot plasmonic filter,” Opt. Comm.285, 2558–2562 (2012). [CrossRef]
  28. Q. H. Mao and J. W. Y. Lit, “Optical bistability in an L-band dual-wavelength erbium-doped fiber laser with overlapping cavities,” IEEE Photon. Technol. Lett.14, 1252–1254 (2002). [CrossRef]
  29. P. Berini and I. Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics6, 16–23 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited