OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23712–23723

Giant omnidirectional radiation enhancement via radially anisotropic zero-index metamaterial

Neng Wang, Huajin Chen, Wanli Lu, Shiyang Liu, and Zhifang Lin  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23712-23723 (2013)
http://dx.doi.org/10.1364/OE.21.023712


View Full Text Article

Enhanced HTML    Acrobat PDF (1382 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a remarkable enhancement of isotropic radiation via radially anisotropic zero-index metamaterial (RAZIM). The radiation power can be enhanced by an order of magnitude when a line source and a dielectric particle is enclosed by a RAZIM shell. Based on the extended Mie theory, we illustrate that the basic physics of this isotropic radiation enhancement lies in the confinement of higher order anisotropic modes by the RAZIM shell. The confinement results in some high field regions within the RAZIM shell and thus enables strong scattering from the dielectric particle therein, giving rise to a giant amplification of isotropic radiation out of the system. The influence of the loss inherent in the RAZIM shell is also examined. It is found that the attenuation of omnidirectional power enhancement due to the loss in the RAZIM can be compensated by gain particles.

© 2013 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(350.5610) Other areas of optics : Radiation
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: August 19, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 5, 2013
Published: September 27, 2013

Citation
Neng Wang, Huajin Chen, Wanli Lu, Shiyang Liu, and Zhifang Lin, "Giant omnidirectional radiation enhancement via radially anisotropic zero-index metamaterial," Opt. Express 21, 23712-23723 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23712


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw Hill, 2002).
  2. C. J. Boukamp and H. B. G. Casimir, “On multipole expansions in the theory of electromagnetic radiation,” Physica20, 539–554 (1954). [CrossRef]
  3. H. F. Mathis, “A short proof that an isotropic antenna is impossible,” Proc. IRE39, 970 (1951).
  4. Y. Yuan, N. Wang, and J. H. Lim, “On the omnidirectional radiation via radially anisotropic zero-index metamaterials,” Europhys. Lett.100, 34005 (2012). [CrossRef]
  5. T. J. Judasz and B. B. Balsley, “Improved theoretical and experimental models for the coaxial colinear antenna,” IEEE Trans. Antennas and Propagat.37, 289–296 (1989). [CrossRef]
  6. R. Bancroft, “Design parameters of an omnidirectional planar microstrip antenna,” Microw. Opt. Technol. Lett.47, 414–418 (2005). [CrossRef]
  7. H. X. Xu, G. M. Wang, M. Q. Qi, and Z. M. Xu, “A metamaterial antenna with frequency-scanning omnidirectional radiation patterns,” Appl. Phys. Lett.101, 173501 (2012). [CrossRef]
  8. J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) patterns,” IEEE Antennas Wirel. Propag. Lett.6, 518–520 (2007). [CrossRef]
  9. S. L. Chen, K. H. Lin, and R. Mittra, “Miniature and near-3D omnidirectional radiation pattern RFID tag antenna design,” Electron. Lett.45, 923–924 (2009). [CrossRef]
  10. R. A. York and R. C. Compton, “Quasi-optical power combining using mutually synchronized oscillator arrays,” IEEE Trans. Microwave Theory Tech.39, 1000–1009 (1991). [CrossRef]
  11. S. Nogi, J. S. Lin, and T. Itoh, “Mode analysis and stabilization of a spatial power combining array with strongly coupled oscillators,” IEEE Trans. Microwave Theory Tech.41, 1827–1837 (1993). [CrossRef]
  12. M. P. DeLisio and R. A. York, “Quasi-optical and spatial power combining,” IEEE Trans. Microwave Theory Tech.50, 929–936 (2002). [CrossRef]
  13. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85, 3966–3969 (2000). [CrossRef] [PubMed]
  14. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292, 77–79 (2001). [CrossRef] [PubMed]
  15. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004). [CrossRef] [PubMed]
  16. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett.108, 213903 (2012). [CrossRef] [PubMed]
  17. N. Garcia, E. V. Ponizovskaya, and John Q. Xiao, “Zero permittivity materials: Band gaps at the visible,” Appl. Phys. Lett.80, 1120–1122 (2002). [CrossRef]
  18. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.97, 157403 (2006). [CrossRef]
  19. B. Edwards, A. Alù, M. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett.100, 033903 (2008). [CrossRef] [PubMed]
  20. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E78, 016604 (2008). [CrossRef]
  21. R. P. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett.100, 023903 (2008). [CrossRef] [PubMed]
  22. M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B77, 233104 (2008). [CrossRef]
  23. Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B81, 085117 (2010). [CrossRef]
  24. Y. Jin and S. L. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express18, 16587–16593 (2010). [CrossRef] [PubMed]
  25. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E70, 046608 (2004). [CrossRef]
  26. M. Silveirinha and Nader Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B,75, 075119 (2007). [CrossRef]
  27. X. Q. Huang, Y. Lai, Z. H. Hang, H. H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater.10, 582–586 (2011). [CrossRef] [PubMed]
  28. Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A77, 053821 (2008). [CrossRef]
  29. Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett.94, 044107 (2009). [CrossRef]
  30. Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D: Appl. Phys.43, 335406 (2010). [CrossRef]
  31. Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett.99, 131913 (2011). [CrossRef]
  32. W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Application of zero-index metamaterials for surface plasmon guiding,” Appl. Phys. Lett.102, 011910 (2013). [CrossRef]
  33. Q. Cheng, R. P. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett.91, 2341052007.
  34. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B76, 245109 (2007). [CrossRef]
  35. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett.89, 213902 (2002). [CrossRef] [PubMed]
  36. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B75, 155410 (2007). [CrossRef]
  37. S. M. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett.108, 193904 (2012). [CrossRef]
  38. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys.105, 044905 (2009). [CrossRef]
  39. J. Luo, P. Xu, H. Y. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett.100, 221903 (2012). [CrossRef]
  40. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett.96, 101109 (2010). [CrossRef]
  41. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett.105, 233908 (2010). [CrossRef]
  42. Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett.98, 113501 (2011). [CrossRef]
  43. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature (London)466, 735–738 (2010). [CrossRef]
  44. A. Veltri and A. Aradian, “Optical response of a metallic nanoparticle immersed in a medium with optical gain,” Phys. Rev. B85, 115429 (2012). [CrossRef]
  45. Z. Huang, T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett.108, 187402 (2012). [CrossRef] [PubMed]
  46. W. R. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett.101, 031907 (2012). [CrossRef]
  47. Y. X. Ni, L. Gao, and C. W. Qiu, “Achieving invisibility of homegeneous cylindrically anisotropic cylinders,” Plamonics5, 251–258 (2010). [CrossRef]
  48. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graph, and Mathematical Tables(Dover, 1964).
  49. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).
  50. Z. C. Chen, R. Mohsen, Y. D. Gong, T. W. Chong, and M. H. Hong, “Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability,” Adv. Mater.24, OP143–OP147 (2012). [CrossRef]
  51. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  52. S. Arslanagic, Y. Liu, R. Malureanu, and R. W. Ziolkowki, “Impact of the excitation source and plasmonic material on cylindrical active coated nano-particles,” Sensors11, 9109–9120 (2011). [CrossRef] [PubMed]
  53. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett.94, 183903 (2005). [CrossRef] [PubMed]
  54. S. Arslanagic and R. W. Ziolkowki, “Active coated nano-particle excited by an arbitrarily located electric Hertzian dipolelresonance and transparency effects,” J. Opt.12, 024014 (2010). [CrossRef]
  55. S. Arslanagic and R. W. Ziolkowki, “Achieve coated nanoparticles: impact of plasmonic material choice,” Appl. Phys. A103, 795–798 (2011). [CrossRef]
  56. S. Arslanagic, “Power flow in the interior and exterior of cylindrical coated nanoparticles,” Appl. Phys. A109, 921–925 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited