OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23724–23735

First harmonic with wavelength modulation spectroscopy to measure integrated absorbance under low absorption

Peng Zhimin, Ding Yanjun, Jia Junwei, Lan Lijuan, Du Yanjun, and Li Zheng  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23724-23735 (2013)
http://dx.doi.org/10.1364/OE.21.023724


View Full Text Article

Enhanced HTML    Acrobat PDF (1999 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Integrated absorbance (IA) can be used to infer gas temperature and concentration directly, in this paper, we proposed a new method that uses the 1st harmonic to measure the IA under low absorption conditions (<10%). Subsequently, a large number of numerical simulations are used to validate the reliability and accuracy of this method, and several absorption lines of CO2 and H2O molecules near 6981 cm–1 are selected to determine the IA and species concentration in experiments. Calculation and experiment results show that the proposed method can accurately measure IA in actual measurements.

© 2013 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(300.6260) Spectroscopy : Spectroscopy, diode lasers

ToC Category:
Spectroscopy

History
Original Manuscript: September 3, 2013
Revised Manuscript: September 20, 2013
Manuscript Accepted: September 21, 2013
Published: September 27, 2013

Citation
Peng Zhimin, Ding Yanjun, Jia Junwei, Lan Lijuan, Du Yanjun, and Li Zheng, "First harmonic with wavelength modulation spectroscopy to measure integrated absorbance under low absorption," Opt. Express 21, 23724-23735 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23724


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7μm,” Appl. Phys. B90(3–4), 619–628 (2008). [CrossRef]
  2. Y. R. Sun, H. Pan, C. F. Cheng, A. W. Liu, J. T. Zhang, and S. M. Hu, “Application of cavity ring-down spectroscopy to the Boltzmann constant determination,” Opt. Express19(21), 19993–20002 (2011). [CrossRef] [PubMed]
  3. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011). [CrossRef]
  4. R. Sur, T. J. Boucher, M. W. Renfro, and B. M. Cetegen, “In situ measurements of water vapor partial pressure and temperature dynamics in a PEM fuel cell,” J. Electrochem. Soc.157(1), B45–B53 (2010). [CrossRef]
  5. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst.32(1), 839–846 (2009). [CrossRef]
  6. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B82(3), 469–478 (2006). [CrossRef]
  7. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37μm,” Appl. Phys. B92(3), 393–401 (2008). [CrossRef]
  8. S. Schilt, “Impact of water vapor on 1.51 μm ammonia absorption features used in trace gas sensing applications,” Appl. Phys. B100(2), 349–359 (2010). [CrossRef]
  9. Y. J. Ding, X. H. Li, Z. M. Peng, and L. Che, “Half-Width Integral Method for Gas Concentration Measuring in Tunable Diode Laser Absorption Spectroscopy,” Spectrosc. Lett.46(7), 465–471 (2013). [CrossRef]
  10. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry —an extensive scrutiny of the generation of signals,” Spectrochim. Acta B56(8), 1277–1354 (2001). [CrossRef]
  11. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt.38(27), 5803–5815 (1999). [CrossRef] [PubMed]
  12. J. A. Silver and D. J. Kane, “Diode laser measurements of concentration and temperature in microgravity combustion,” Meas. Sci. Technol.10(10), 845–852 (1999). [CrossRef]
  13. J. T. C. Liu, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows,” Appl. Phys. B78(3–4), 503–511 (2004). [CrossRef]
  14. F. Wang, K. F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, and Y. Chi, “Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser,” Flow Meas. Instrum.21(3), 382–387 (2010). [CrossRef]
  15. J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation spectroscopy without certified gas mixtures,” Appl. Phys. B70(4), 627–633 (2000). [CrossRef]
  16. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt.45(5), 1052–1061 (2006). [CrossRef] [PubMed]
  17. H. Li, S. D. Wehe, and K. R. McManus, “Real-time equivalence ratio measurements in gas turbine combustors with a near-infrared diode laser sensor,” Proc. Combust. Inst.33(1), 717–724 (2011). [CrossRef]
  18. A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7μm,” Appl. Phys. B96(1), 161–173 (2009). [CrossRef]
  19. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt.48(29), 5546–5560 (2009). [CrossRef] [PubMed]
  20. K. Sun, X. Chao, R. Sur, J. B. Jeffries, and R. K. Hanson, “Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing,” Appl. Phys. B110(4), 497–508 (2013). [CrossRef]
  21. K. Duffin, A. J. McGettrick, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line-shapes,” J. Lightwave Technol.25(10), 3114–3125 (2007). [CrossRef]
  22. A. J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, and D. G. Moodie, “Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurements of gas concentration and pressure,” J. Lightwave Technol.26(4), 432–440 (2008). [CrossRef]
  23. L. Li, N. Arsad, G. Stewart, G. Thursby, B. Culshaw, and Y. D. Wang, “Absorption line profile recovery based on residual amplitude modulation and first harmonic integration methods in photoacoustic gas sensing,” Opt. Commun.284(1), 312–316 (2011). [CrossRef]
  24. G. Stewart, W. Johnstone, J. R. P. Bain, K. Ruxton, and K. Duffin, “Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—part 1: theoretical analysis,” J. Lightwave Technol.29(6), 811–821 (2011).
  25. J. R. P. Bain, W. Johnstone, K. Ruxton, G. Stewart, M. Lengden, and K. Duffin, “Recovery of absolute gas absorption line shapes using tuneable diode laser spectroscopy with wavelength modulation—Part 2: Experimental investigation,” J. Lightwave Technol.29(7), 987–996 (2011). [CrossRef]
  26. P. Zhimin, D. Yanjun, C. Lu, and Y. Qiansuo, “Odd harmonics with wavelength modulation spectroscopy for recovering gas absorbance shape,” Opt. Express20(11), 11976–11985 (2012). [CrossRef] [PubMed]
  27. B. Lins, P. Zinn, R. Engelbrecht, and B. Schmauss, “Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS,” Appl. Phys. B100(2), 367–376 (2010). [CrossRef]
  28. A. L. Chakraborty, K. Ruxton, W. Johnstone, M. Lengden, and K. Duffin, “Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line,” Opt. Express17(12), 9602–9607 (2009). [CrossRef] [PubMed]
  29. A. L. Chakraborty, K. Ruxton, and W. Johnstone, “Influence of the wavelength-dependence of fiber couplers on the background signal in wavelength modulation spectroscopy with RAM-nulling,” Opt. Express18(1), 267–280 (2010). [CrossRef] [PubMed]
  30. K. Ruxtona, A. L. Chakraborty, W. Johnstone, M. Lengden, G. Stewart, and K. Duffin, “Tunable diode laser spectroscopy with wavelength modulation: Elimination of residual amplitude modulation in a phasor decomposition approach,” Sens. Actuators B Chem.150(1), 367–375 (2010). [CrossRef]
  31. Y. Y. Liu, J. L. Lin, G. M. Huang, Y. Q. Guo, and C. X. Duan, “Simple empirical analytical approximation to the Voigt profile,” J. Opt. Soc. Am. B18(5), 666–672 (2001). [CrossRef]
  32. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: A brief review,” J. Quant. Spectrosc. Radiat. Transf.17(2), 233–236 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited