OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23748–23755

Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band

Miguel Navarro-Cía, Miriam S. Vitiello, Carlos M. Bledt, Jeffrey E. Melzer, James A. Harrington, and Oleg Mitrofanov  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23748-23755 (2013)
http://dx.doi.org/10.1364/OE.21.023748


View Full Text Article

Enhanced HTML    Acrobat PDF (2196 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A low-loss and low-dispersive optical-fiber-like hybrid HE11 mode is developed within a wide band in metallic hollow waveguides if their inner walls are coated with a thin dielectric layer. We investigate terahertz (THz) transmission losses from 0.5 to 5.5 THz and bending losses at 2.85 THz in a polystyrene-lined silver waveguides with core diameters small enough (1 mm) to minimize the number of undesired modes and to make the waveguide flexible, while keeping the transmission loss of the HE11 mode low. The experimentally measured loss is below 10 dB/m for 2 < ν < 2.85 THz (~4-4.5 dB/m at 2.85 THz) and it is estimated to be below 3 dB/m for 3 < ν < 5 THz according to the numerical calculations. At ~1.25 THz, the waveguide shows an absorption peak of ~75 dB/m related to the transition between the TM11-like mode and the HE11 mode. Numerical modeling reproduces the measured absorption spectrum but underestimates the losses at the absorption peak, suggesting imperfections in the waveguide walls and that the losses can be reduced further.

© 2013 Optical Society of America

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(180.4243) Microscopy : Near-field microscopy
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(300.6495) Spectroscopy : Spectroscopy, teraherz
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Terahertz Optics

History
Original Manuscript: May 21, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: August 22, 2013
Published: September 30, 2013

Citation
Miguel Navarro-Cía, Miriam S. Vitiello, Carlos M. Bledt, Jeffrey E. Melzer, James A. Harrington, and Oleg Mitrofanov, "Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band," Opt. Express 21, 23748-23755 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23748


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000). [CrossRef]
  2. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett.80(15), 2634–2636 (2002), http://apl.aip.org/resource/1/applab/v80/i15/p2634_s1 . [CrossRef]
  3. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009). [CrossRef] [PubMed]
  4. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express17(10), 8012–8028 (2009). [CrossRef] [PubMed]
  5. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B25(12), 1949–1954 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-12-1949 . [CrossRef]
  6. A. L. Bingham and D. R. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wirel. Comp. Lett. 18, 428–430 (2008). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4536885
  7. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009). [CrossRef] [PubMed]
  8. O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. THz Sci. Tech. (Paris)1, 124–132 (2011), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6005337 .
  9. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010). [CrossRef] [PubMed]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008), http://apl.aip.org/resource/1/applab/v93/i18/p181104_s1 . [CrossRef]
  11. X.-L. Tang, Y.-W. Shi, Y. Matsuura, K. Iwai, and M. Miyagi, “Transmission characteristics of terahertz hollow fiber with an absorptive dielectric inner-coating film,” Opt. Lett.34(14), 2231–2233 (2009). [CrossRef] [PubMed]
  12. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1073590 . [CrossRef]
  13. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  14. C. M. Bledt, J. E. Melzer, and J. A. Harrington, “Fabrication and characterization of improved Ag/PS hollow glass waveguides for THz transmission,” Submitted to Appl. Opt. (May 2013).
  15. O. Mitrofanov, T. Tan, P. R. Mark, B. Bowden, and J. A. Harrington, “Waveguide mode imaging and dispersion analysis with terahertz near-field microscopy,” Appl. Phys. Lett.94(17), 171104 (2009), http://apl.aip.org/resource/1/applab/v94/i17/p171104_s1 . [CrossRef]
  16. M. Navarro-Cía, C. M. Bledt, M. S. Vitiello, H. E. Beere, D. A. Ritchie, J. A. Harrington, and O. Mitrofanov, “Modes in AgI lined hollow metallic waveguides mapped by terahertz near-field time-domain microscopy,” J. Opt. Soc. Am. B30(1), 127–135 (2013). [CrossRef]
  17. M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011), http://jap.aip.org/resource/1/japiau/v110/i6/p063112_s1 . [CrossRef]
  18. M. S. Vitiello, G. Scamarcio, V. Spagnolo, S. S. Dhillon, and C. Sirtori, “Terahertz quantum cascade lasers with large wall-plug efficiency,” Appl. Phys. Lett.90(19), 191115 (2007), http://apl.aip.org/resource/1/applab/v90/i19/p191115_s1 . [CrossRef]
  19. http://spectra.iao.ru/en/en/home/
  20. P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express20(17), 19176–19184 (2012). [CrossRef] [PubMed]
  21. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express21(3), 3388–3399 (2013). [CrossRef] [PubMed]
  22. J. R. Birch, “The far-infrared optical constants of polypropylene, PTFE, and polystyrene,” Infrared Phys.33(1), 33–38 (1992), http://www.sciencedirect.com/science/article/pii/002008919290052U . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited