OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23756–23771

Physical layer secret key generation for fiber-optical networks

Konstantin Kravtsov, Zhenxing Wang, Wade Trappe, and Paul R. Prucnal  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23756-23771 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7098 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and experimentally demonstrate a method for generating and sharing a secret key using phase fluctuations in fiber optical links. The obtained key can be readily used to support secure communication between the parties. The security of our approach is based on a fundamental asymmetry associated with the optical physical layer: the sophistication of tools needed by an eavesdropping adversary to subvert the key establishment is significantly greater and more costly than the complexity needed by the legitimate parties to implement the scheme. In this sense, the method is similar to the classical asymmetric algorithms (Diffie-Hellman, RSA, etc.)

© 2013 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.4785) Fiber optics and optical communications : Optical security and encryption

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 14, 2013
Revised Manuscript: September 15, 2013
Manuscript Accepted: September 17, 2013
Published: September 30, 2013

Konstantin Kravtsov, Zhenxing Wang, Wade Trappe, and Paul R. Prucnal, "Physical layer secret key generation for fiber-optical networks," Opt. Express 21, 23756-23771 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam, “ProxiMate: proximity-based secure pairing using ambient wireless signals,” in “MobiSys ’11 Proceedings of the 9th international conference on Mobile systems, applications, and services,” (2011), pp. 211–224.
  2. K. Ren, H. Su, and Q. Wang, “Secret key generation exploiting channel characteristics in wireless communications,” IEEE Wireless Communications18, 6–12 (2011). [CrossRef]
  3. W. Wells, R. Stone, and E. Miles, “Secure communications by optical homodyne,” IEEE J. Sel. Areas Commun.11, 770–777 (1993). [CrossRef]
  4. J. Menders, C. Diamond, and E. Miles, “Interferometric generation of random binary keys for secure optical communication,” Proc. SPIE4471, 208–213 (2001). [CrossRef]
  5. W. Wells, J. Menders, E. Miles, B. Loginov, and H. Hodara, “Another alternative to quantum cryptography,” Quant. Inform. Processing1, 91–106 (2002). [CrossRef]
  6. H. Hodara, E. Miles, J. Menders, and W. Wells, “Secure fiberoptic communications,” Fiber and Integrated Optics22, 47–61 (2003).
  7. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” IEEE Trans. Inf. Forensics Security6, 725–736 (2011). [CrossRef]
  8. B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express14, 3738–3751 (2006). [CrossRef] [PubMed]
  9. K. Kravtsov, B. Wu, I. Glesk, P. R. Prucnal, and E. Narimanov, “Stealth transmission over a WDM network with detection based on an all-optical thresholder,” in “Proc. of LEOS 2007,” (Lake Buena Vista, FL USA, 2007).
  10. S. Goldberg, R. Menendez, and P. Prucnal, “Towards a cryptanalysis of spectral-phase encoded optical CDMA with phase-scrambling,” in “Proc. of OFC/NFOEC 2007 OThJ7,” (Anaheim, CA USA, 2007), pp. 1–3.
  11. O. Hirota, K. Katob, M. Shomac, and T. S. Usuda, “Quantum key distribution with unconditional security for all optical fiber network,” Proc. SPIE5161, 320–331 (2004). [CrossRef]
  12. E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A71, 062326 (2005). [CrossRef]
  13. I. Glesk, Y.-K. Huang, C. S. Brès, and P. R. Prucnal, “Design and demonstration of a novel optical CDMA platform for use in avionics applications,” Opt. Commun.271, 65–70 (2007). [CrossRef]
  14. K.-I. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: Threats and security enhancement,” J. Lightwav. Technol.29, 3210–3222 (2011). [CrossRef]
  15. P.-L. Liu, “A key agreement protocol using band-limited random signals and feedback,” J. Lightwav. Technol.27, 5230–5234 (2009). [CrossRef]
  16. P.-L. Liu, “Key exchange using random signals and feedback-statistical analysis,” J. Lightwav. Technol.28, 65–70 (2010). [CrossRef]
  17. L. L. Kish, B. Zhang, and L. B. Kish, “Cracking the Liu key exchange protocol in its most secure state with lorentzian spectra,” Fluct. and noise lett.9, 37–45 (2010). [CrossRef]
  18. J. Scheuer and A. Yariv, “Giant fiber lasers: A new paradigm for secure key distribution,” Phys. Rev. Lett.97, 140502 (2006). [CrossRef] [PubMed]
  19. A. Zadok, J. Scheuer, J. Sendowski, and A. Yariv, “Secure key generation using an ultra-long fiber laser: transient analysis and experiment,” Opt. Express16, 16680–16690 (2008). [CrossRef] [PubMed]
  20. D. Bar-Lev and J. Scheuer, “Enhanced key-establishing rates and efficiencies in fiber laser key distribution systems,” Phys. Lett. A373, 4287–4296 (2009). [CrossRef]
  21. P. LeCong, “Secure communication system,” U.S. Patent (Mar. 2, 1993).
  22. E. Udd, “Secure fiber optic communication system based on the Sagnac interferometer,” Proc. SPIE2837, 172–176 (1996). [CrossRef]
  23. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10−19relative accuracy,” Opt. Lett.34, 2270–2272 (2009). [CrossRef] [PubMed]
  24. M. Amemiya, M. Imae, Y. Fujii, T. Suzuyama, F.-L. Hong, and M. Takamoto, “Precise frequency comparison system using bidirectional optical amplifiers,” IEEE Trans. Instr. Meas.59, 631–640 (2010). [CrossRef]
  25. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett.19, 1777–1779 (1994). [CrossRef] [PubMed]
  26. S. M. Foreman, A. D. Ludlow, M. H. G. de Miranda, J. E. Stalnaker, S. A. Diddams, and J. Ye, “Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10−17,” Phys. Rev. Lett.99, 153601 (2007). [CrossRef]
  27. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B25, 1284–1293 (2008). [CrossRef]
  28. S.-B. Cho and T.-G. Noh, “Stabilization of a long-armed fiber-optic single-photon interferometer,” Opt. Express17, 19027–19032 (2009). [CrossRef]
  29. G. B. Xavier and J. P. von der Weid, “Stable single-photon interference in a 1 km fiber-optic Mach-Zehnder interferometer with continuous phase adjustment,” Opt. Lett.36, 1764–1766 (2011). [CrossRef] [PubMed]
  30. G. Xavier, T. da Silva, G. Tempora, and J. von der Weid, “Polarisation drift compensation in 8 km-long Mach-Zehnder fibre-optical interferometer for quantum communication,” Electron. Lett47, 608–609 (2011). [CrossRef]
  31. J. Minář, H. de Riedmatten, C. Simon, H. Zbinden, and N. Gisin, “Phase-noise measurements in long-fiber interferometers for quantum-repeater applications,” Phys. Rev. A77, 052325 (2008). [CrossRef]
  32. A.-S. Babak, K. Aggelos, M. Alejandra, and Y. Bulent, “Robust key generation from signal envelopes in wireless networks,” in “CCS ’07 Proceedings of the 14th ACM conference on Computer and communications security,” (2007), pp. 401–410.
  33. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. L. Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photon.1, 283–287 (2007). [CrossRef]
  34. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum.78, 021101 (2007). [CrossRef] [PubMed]
  35. C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75, 032314 (2007). [CrossRef]
  36. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78, 042333 (2008). [CrossRef]
  37. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12, 113026 (2010). [CrossRef]
  38. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nature Photon.4, 686–689 (2010). [CrossRef]
  39. N. Patwari, J. Croft, S. Jana, and S. K. Kasera, “High-rate uncorrelated bit extraction for shared secret key generation from channel measurements,” IEEE Trans. Mobile Computing9, 17–30 (2010). [CrossRef]
  40. C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and N. B. Mandayam, “Information-theoretically secret key generation for fading wireless channels,” IEEE Trans. Inf. Forensics Security5, 240–254 (2010). [CrossRef]
  41. G. Brassard and L. Salvail, “Secret-key reconciliation by public discussion,” in “EUROCRYPT ’93: Workshop on the theory and application of cryptographic techniques on Advances in cryptology,” (Secaucus, NJ, USA, 1994), pp. 410–423.
  42. A. M. Fraser and H. L. Swinney, “Independent coordinates or strange attractors from mutual information,” Phys. Rev. A33, 1134–1140 (1986). [CrossRef] [PubMed]
  43. A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Phys. Rev. E69, 066138 (2004). [CrossRef]
  44. M. Sasaki, M. Fujiwara, H. Ishizuka, and , “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19, 10387 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited