OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23772–23784

Femtosecond-laser-induced shockwaves in water generated at an air-water interface

B.D. Strycker, M.M. Springer, A.J. Traverso, A.A. Kolomenskii, G.W. Kattawar, and A.V. Sokolov  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23772-23784 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (7392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

© 2013 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.1020) Medical optics and biotechnology : Ablation of tissue
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(350.7420) Other areas of optics : Waves
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Ultrafast Optics

Original Manuscript: June 21, 2013
Revised Manuscript: July 20, 2013
Manuscript Accepted: July 21, 2013
Published: September 30, 2013

B.D. Strycker, M.M. Springer, A.J. Traverso, A.A. Kolomenskii, G.W. Kattawar, and A.V. Sokolov, "Femtosecond-laser-induced shockwaves in water generated at an air-water interface," Opt. Express 21, 23772-23784 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Askar’yan, A. M. Prokhorov, G. F. Chanturiya, and G. P. Shipulo, “The effects of a laser beam in a liquid,” Sov. Phys. JETP17(6), 1463–1465 (1963).
  2. R. G. Brewer and K. E. Rieckhoff, “Stimulated scattering in liquids,” PRL13(11), 334–336 (1964). [CrossRef]
  3. F. V. Bunkin and V. M. Komissarov, “Optical excitation of sound waves,” Sov. Phys. Acoust.19(3), 203–211 (1973).
  4. F. V. Bunkin and M. I. Tribel’skii, “Nonresonant interaction of high-power optical radiation with a liquid,” Sov. Phys. Usp.23(2), 105–133 (1980). [CrossRef]
  5. L. M. Lyamshev and K. A. Naugol’nykh, “Optical generation of sound: nonlinear effects (review),” Sov. Phys. Acoust.27(5), 357–371 (1981).
  6. L. M. Lyamshev, “Lasers in acoustics,” Sov. Phys. Usp.30(3), 252–279 (1987). [CrossRef]
  7. B. S. Maccabee, “Laser induced underwater sound,” IEEE 1987 Ultrasonics Symposium, 1099–1108 (1985). [CrossRef]
  8. F. V. Bunkin, A. A. Kolomensky, and V. G. Mikhalevich, Lasers in Acoustics (Harwood Academic Publishers, 1991).
  9. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP Press, 1993).
  10. J. Noack and A. Vogel, “Streak-photographic Investigation of shock wave emission after laser-induced plasma formation in water,” Proc. SPIE2391, 284 (1995).
  11. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am.100(1), 148–165 (1996). [CrossRef]
  12. J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt.37(19), 4092–4099 (1998). [CrossRef]
  13. E. Abraham, K. Minoshima, and H. Matsumoto, “Femtosecond laser-induced breakdown in water: time-resolved shadow imaging and two-color interferometric imaging,” Opt. Commun.176(4-6), 441–452 (2000). [CrossRef]
  14. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. M.-T. Kim, and E. Mazur, “Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express10(3), 196–203 (2002). [CrossRef]
  15. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997). [CrossRef]
  16. E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, “Minimally disruptive laser-induced breakdown in water,” Opt. Lett.22(23), 1817–1819 (1997). [CrossRef]
  17. R. Petkovsek, J. Mozina, and G. Mocnik, “Optodynamic characterization of the shock waves after laser-induced breakdown in water,” Opt. Express13(11), 4107–4112 (2005). [CrossRef]
  18. A. Takita and Y. Hayasaki, “Dynamics of femtosecond laser-induced breakdowns in water,” Proc. SPIE7201, 72010J (2009).
  19. A. Takita and Y. Hayasaki, “Interference measurement of superposition of laser-induced shock waves in water,” Jpn. J. Appl. Phys.48(9), 09LD04 (2009). [CrossRef]
  20. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” PRL100(3), 038102 (2008). [CrossRef]
  21. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  22. W. Lauterborn and A. Vogel, “Shock wave emission by laser generated bubbles,” in Bubble Dynamics & Shock Waves, C. F. Delale, ed. (Springer-Verlag, 2013), pp. 67–103.
  23. S. L. Chin, Femtosecond Laser Filaments (Springer, 2010).
  24. A. Lindinger, J. Hagen, L. D. Socaciu, T. M. Bernhardt, L. Wöste, D. Duft, and T. Leisner, “Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses,” Appl. Opt.43(27), 5263–5269 (2004). [CrossRef]
  25. A. A. Zemlyanov, Y. E. Geints, and D. V. Apeksimov, “Gas-dynamic explosion of water microparticles under action high-power femtosecond laser pulses,” Proc. SPIE6160, 61601G (2006). [CrossRef]
  26. C. Favre, V. Boutou, S. C. Hill, W. Zimmer, M. Krenz, H. Lambrecht, J. Yu, R. K. Chang, L. Woeste, and J.-P. Wolf, “White-light nanosource with directional emission,” PRL89(3), 035002 (2002). [CrossRef]
  27. F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, “Plasma formation dynamics within a water microdroplet on femtosecond time scales,” Opt. Lett.28(3), 206–208 (2003). [CrossRef]
  28. F. Courvoisier, V. Boutou, J. Kasparian, E. Salmon, G. Méjean, J. Yu, and J.-P. Wolf, “Ultraintense light filaments transmitted through clouds,” Appl. Phys. Lett.83(2), 213–215 (2003). [CrossRef]
  29. A. Flettner, T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “High-harmonic generation and plasma radiation from water micro-droplets,” Appl. Phys. B77(8), 747–751 (2003). [CrossRef]
  30. P. Rohwetter, K. Stelmaszczyk, M. Queißer, M. Fechner, and L. Wöste, “Relative merit of χ(3) and χ(2) SHG by charged water microdroplets – Implications for LIDAR,” Opt. Commun.281(4), 797–802 (2008). [CrossRef]
  31. Y. Q. Liu, J. Zhang, Z. M. Sheng, X. Y. Peng, and Z. Jin, “Absorption and second harmonic emission from interaction of femtosecond laser pulses with microspherical droplets,” Opt. Commun.281(5), 1244–1250 (2008). [CrossRef]
  32. Y. E. Geints, A. M. Kabanov, G. G. Matvienko, V. K. Oshlakov, A. A. Zemlyanov, S. S. Golik, and O. A. Bukin, “Broadband emission spectrum dynamics of large water droplets exposed to intense ultrashort laser radiation,” Opt. Lett.35(16), 2717–2719 (2010). [CrossRef]
  33. Y. E. Geints, A. A. Zemlyanov, A. M. Kabanov, E. E. Bykova, D. V. Apeksimov, O. A. Bukin, E. B. Sokolova, S. S. Golik, and A. A. Ilyin, “Angular diagram of broadband emission of millimeter-sized water droplets exposed to gigawatt femtosecond laser pulses,” Appl. Opt.50(27), 5291–5298 (2011). [CrossRef]
  34. C. Sarpe-Tudoran, A. Assion, M. Wollenhaupt, M. Winter, and T. Baumert, “Plasma dynamics of water breakdown at a water surface induced by femtosecond laser pulses,” Appl. Phys. Lett.88(26), 261109 (2006). [CrossRef]
  35. M. Anija and R. Philip, “Recombination emissions and spectral blueshift of pump radiation from ultrafast laser induced plasma in a planar water microjet,” Opt. Commun.282(18), 3770–3774 (2009). [CrossRef]
  36. C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys.14(7), 075021 (2012). [CrossRef]
  37. F. V. Bunkin, N. V. Karlov, V. M. Komissarov, and G. P. Kuz’min, “Excitation of sound when a surface layer of a liquid absorbs a laser pulse,” ZhETF Pis. Red.13(9), 479–483 (1971).
  38. C. E. Bell and B. S. Maccabee, “Shock wave generation in air and in water by CO2 TEA laser radiation,” Appl. Opt.13(3), 605–609 (1974). [CrossRef]
  39. D. C. Emmony, M. Siegrist, and F. K. Kneubühl, “Laser-induced shock waves in liquids,” Appl. Phys. Lett.29(9), 547–549 (1976). [CrossRef]
  40. D. C. Emmony, B. M. Geerken, and A. Straaijer, “The interaction of 10.6 μm laser radiation with liquids,” Infrared Phys.16(1-2), 87–92 (1976). [CrossRef]
  41. G. V. Ostrovskaya and E. V. Shedova, “Optical studies of shock and acoustic waves generated due to absorption of CO2 radiation in water,” Izv. Akad. Nauk, Ser. Fiz.61, 1342–1352 (1997).
  42. G. V. Ostrovskaya, I. I. Komissarova, V. N. Philippov, and E. N. Shedova, “Shock waves induced by pulsed CO2 laser radiation focused on a free surface of a liquid,” Proc. SPIE3093, 146–151 (1997). [CrossRef]
  43. A. O. Bukin, I. G. Nagorniv, F. P. Yarovenko, S. S. Golik, V. I. Tsarev, and A. N. Pavlov, “Features of nanosecond laser-induced optical breakdown at air-water interface,” in The 31st IEEE International Conference on Plasma Science, 2004. ICOPS 2004. IEEE Conference Record – Abstracts, Baltimore, Maryland, USA, 1 July 2004, pp. 146. [CrossRef]
  44. J. Sinko, L. Kodgis, S. Porter, J. Lin, A. V. Pakhomov, C. W. Larson, and F. B. Mead., “An analysis of force generation in TEA CO2 laser ablation of liquids,” Proc. SPIE6261, 62611W (2006). [CrossRef]
  45. S. T. Thoroddsen, K. Takehara, T. G. Etoh, and C.-D. Ohl, “Spray and microjets produced by focusing a laser pulse into a hemispherical drop,” Phys. Fluids21(11), 112101 (2009). [CrossRef]
  46. D. Jang, J.-G. Park, and D. Kim, “Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning,” J. Appl. Phys.109(7), 073101 (2011). [CrossRef]
  47. K. Ando, A. Q. Liu, and C. D. Ohl, “Dynamic rupture of water in microfluidics,” presented at the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2011), Seattle, Washington, USA, 2–6 Oct. 2011.
  48. R. C. C. Chen, Y. T. Yu, K. W. Su, J. F. Chen, and Y. F. Chen, “Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface,” Opt. Express21(1), 445–453 (2013). [CrossRef]
  49. S. V. Oshemkov, L. P. Dvorkin, and V. Y. Dmitriev, “Jet formation upon ultrafast laser induced breakdown in the vicinity of liquid-gas interface,” Tech. Phys. Lett.34(5), 408–410 (2008). [CrossRef]
  50. P. H. Rogers, “Weak-shock solution for underwater explosive shock waves,” J. Acoust. Soc. Am.62(6), 1412–1419 (1977). [CrossRef]
  51. M. Greenspan and C. E. Tschiegg, “Tables of the speed of sound in water,” J. Acoust. Soc. Am.31(1), 75–76 (1959). [CrossRef]
  52. M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics (Academic Press, 1998).
  53. A. J. Zuckerwar, Handbook of the Speed of Sound in Real Gases (Elsevier, 2002), Vol. III.
  54. D. X. Hammer, E. D. Jansen, M. Frenz, G. D. Noojin, R. J. Thomas, J. Noack, A. Vogel, B. A. Rockwell, and A. J. Welch, “Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs,” Appl. Opt.36(22), 5630–5640 (1997). [CrossRef]
  55. C. H. Fan, J. Sun, and J. P. Longtin, “Breakdown threshold and localized electron density in water induced by ultrashort laser pulses,” J. Appl. Phys.91(4), 2530–2536 (2002). [CrossRef]
  56. D. M. Rayner, A. Naumov, and P. B. Corkum, “Ultrashort pulse non-linear optical absorption in transparent media,” Opt. Express13(9), 3208–3217 (2005). [CrossRef]
  57. M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Y. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci.253(15), 6276–6282 (2007). [CrossRef]
  58. S. L. Chin and S. Lagace, “Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization,” Appl. Opt.35(6), 907–911 (1996). [CrossRef]
  59. G. Maatz, A. Heisterkamp, H. Lubatschowski, S. Barcikowski, C. Fallnich, H. Welling, and W. Ertmer, “Chemical and physical side effects at application of ultrashort laser pulses for intrastromal refractive surgery,” J. Opt. A, Pure Appl. Opt.2(1), 59–64 (2000). [CrossRef]
  60. A. S. Alsulmi, “Water analysis by laser induced breakdown spectroscopy (LIBS),” Masters thesis, King Saud University, Saudi Arabia, (2008).
  61. A. A. Ilyin, E. B. Sokolova, S. S. Golik, O. A. Bukin, and K. A. Shmirko, “Time evolution of emission spectra from plasmas produced by irradiation of seawater surfaces by a femtosecond laser,” J. Appl. Spectrosc.78(6), 861–866 (2012). [CrossRef]
  62. F. V. Bunkin and A. M. Prokhorov, “Use of a laser energy source in producing a reactive thrust,” Usp. Fiziol. Nauk119(7), 425–446 (1976). [CrossRef]
  63. C. Phipps, M. Birkan, W. Bohn, H.-A. Eckel, H. Horisawa, T. Lippert, M. Michaelis, Y. Rezunkov, A. Sasoh, W. Schall, S. Scharring, and J. Sinko, “Review: Laser-ablation propulsion,” J. Propul. Power26(4), 609–637 (2010). [CrossRef]
  64. K. Franjic, “Studies of laser ablation of liquid water under conditions of impulsive heat deposition through vibrational excitations (IHDVE),” Doctoral thesis, University of Toronto, (2010).
  65. V. S. Teslenko, “Investigation of photoacoustic and photohydrodynamic parameters of laser breakdown in liquids,” Kvantovaya Elektron. (Moscow)4, 1732–1737 (1977).
  66. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B68(2), 271–280 (1999). [CrossRef]
  67. E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech.558, 281–308 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited