OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23785–23802

Shockwave based nonlinear optical manipulation in densely scattering opaque suspensions

Elad Greenfield, Jonathan Nemirovsky, Ramy El-Ganainy, Demetri N. Christodoulides, and Mordechai Segev  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23785-23802 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1528 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical manipulation of particulate-loaded, highly scattering (opaque) suspensions is considered impossible. Here we demonstrate theoretically and experimentally optical manipulation of the local properties of such opaque suspensions. We show that the optical forces exerted by multiply-scattered light give rise to dense shock fronts of particle concentration, propagating deep inside the opaque suspensions, where the optical field is completely diffuse. We exploit these waves to demonstrate a plethora of optofluidic manipulations, ranging from optical transport and concentration of large populations of nanoparticles, to light-induced 'writing' of concentrated spots in the suspensions and light-induced phase-transition from suspension to gel in localized volumes inside the fluids.

© 2013 Optical Society of America

OCIS Codes
(170.5270) Medical optics and biotechnology : Photon density waves
(290.4210) Scattering : Multiple scattering
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: June 21, 2013
Revised Manuscript: August 29, 2013
Manuscript Accepted: August 29, 2013
Published: September 30, 2013

Elad Greenfield, Jonathan Nemirovsky, Ramy El-Ganainy, Demetri N. Christodoulides, and Mordechai Segev, "Shockwave based nonlinear optical manipulation in densely scattering opaque suspensions," Opt. Express 21, 23785-23802 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Fainman, Optofluidics: Fundamentals, Fevices, and Applications, (McGraw-Hill, 2010).
  2. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  3. U. Levy and R. Shamai, “Tunable optofluidic devices,” Microfluid. Nanofluid.4(1-2), 97–105 (2008). [CrossRef]
  4. S. Kim, A. M. Streets, R. R. Lin, S. R. Quake, S. Weiss, and D. S. Majumdar, “High-throughput single-molecule optofluidic analysis,” Nat. Methods8(3), 242–245 (2011). [CrossRef] [PubMed]
  5. A. E. Vasdekis, E. A. Scott, C. P. O’Neil, D. Psaltis, and J. A. Hubbell, “Precision intracellular delivery based on optofluidic polymersome rupture,” ACS Nano6(9), 7850–7857 (2012). [CrossRef] [PubMed]
  6. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers. (World Scientific, 2006).
  7. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13(4), 041302 (2008). [CrossRef] [PubMed]
  8. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging. (Wiley-Interscience, 2007).
  9. J. Mewis and N. J. Wagner, Colloidal Suspension Rheology, (Cambridge University Press, 2012).
  10. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  11. I. M. Vellekoop, A. Langendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4, 320–322 (2010).
  12. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5(6), 372–377 (2011). [CrossRef]
  13. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics6, 549–553 (2012).
  14. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010).
  15. P. L. Sachdev, Nonlinear Diffusive Waves, (Cambridge University Press, 1987).
  16. A. Ashkin, J. M. Dziedzic, and P. W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett.7(6), 276–278 (1982). [CrossRef] [PubMed]
  17. V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc.98(3), 466–469 (2005). [CrossRef]
  18. C. Stockbridge, Y. Lu, J. Moore, S. Hoffman, R. Paxman, K. Toussaint, and T. Bifano, “Focusing through dynamic scattering media,” Opt. Express20(14), 15086–15092 (2012). [CrossRef] [PubMed]
  19. M. Anyfantakis, A. Koniger, S. Pispas, W. Kohler, H. J. Butt, B. Loppinet, and G. Fytas, “Versatile light actuated matter manipulation in transparent non-dilute polymer solutions,” Soft Matter8(8), 2382–2384 (2012). [CrossRef]
  20. M. Anyfantakis, B. Loppinet, G. Fytas, and S. Pispas, “Optical spatial solitons and modulation instabilities in transparent entangled polymer solutions,” Opt. Lett.33(23), 2839–2841 (2008). [CrossRef] [PubMed]
  21. R. Sigel, G. Fytas, N. Vainos, S. Pispas, and N. Hadjichristidis, “Pattern formation in homogeneous polymer solutions induced by a continuous-wave visible laser,” Science297(5578), 67–70 (2002). [CrossRef] [PubMed]
  22. R. Wunenburger, B. Issenmann, E. Brasselet, C. Loussert, V. Hourtane, and J. P. Delville, “Fluid flows driven by light scattering,” J. Fluid Mech.666, 273–307 (2011). [CrossRef]
  23. C. Conti, N. Ghofraniha, G. Ruocco, and S. Trillo, “Laser beam filamentation in fractal aggregates,” Phys. Rev. Lett.97(12), 123903 (2006). [CrossRef] [PubMed]
  24. C. Conti and E. DelRe, “Optical supercavitation in soft Matter,” Phys. Rev. Lett.105(11), 118301 (2010). [CrossRef] [PubMed]
  25. E. Greenfield, C. Rotschild, A. Szameit, J. Nemirovsky, R. El-Ganainy, D. N. Christodoulides, M. Saraf, E. Lifshitz, and M. Segev, “Light-induced self-synchronizing flow patterns,” New J. Phys.13(5), 053021 (2011). [CrossRef]
  26. Y. Lamhot, A. Barak, O. Peleg, and M. Segev, “Self-trapping of optical beams through thermophoresis,” Phys. Rev. Lett.105(16), 163906 (2010). [CrossRef] [PubMed]
  27. Y. Lamhot, A. Barak, C. Rotschild, M. Segev, M. Saraf, E. Lifshitz, A. Marmur, R. El-Ganainy, and D. N. Christodoulides, “Optical control of thermocapillary effects in complex nanofluids,” Phys. Rev. Lett.103(26), 264503 (2009). [CrossRef] [PubMed]
  28. K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012). [CrossRef]
  29. Y. L. Guo, A. Morozov, D. Schneider, J. W. Chung, C. Zhang, M. Waldmann, N. Yao, G. Fytas, C. B. Arnold, and R. D. Priestley, “Ultrastable nanostructured polymer glasses,” Nat. Mater.11(4), 337–343 (2012). [CrossRef] [PubMed]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley-Interscience, 1983).
  31. T. Inagaki, E. T. Arakawa, R. N. Hamm, and M. W. Williams, “Optical-properties of polystyrene from near-Infrared to X-Ray region and convergence of optical sum-rules,” Phys. Rev. B15(6), 3243–3253 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (9097 KB)     
» Media 2: MOV (1361 KB)     
» Media 3: MOV (1335 KB)     
» Media 4: MOV (2962 KB)     
» Media 5: MOV (2738 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited