OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23803–23811

A novel structure for tunable terahertz absorber based on graphene

Bing-zheng Xu, Chang-qing Gu, Zhuo Li, and Zhen-yi Niu  »View Author Affiliations

Optics Express, Vol. 21, Issue 20, pp. 23803-23811 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2327 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Graphene can be used as a platform for tunable absorbers for its tunability of conductivity. In this paper, we proposed an “uneven dielectric slab structure” for the terahertz (THz) tunable absorber based on graphene. The absorber consists of graphene-dielectric stacks and an electric conductor layer, which is easy to fabricate in the manufacturing technique. Fine tuning of the absorption resonances can be conveniently achieved by adjusting the bias voltage. Both narrowband and broadband tunable absorbers made of this structure are demonstrated without using a patterned graphene. In addition, this type of graphene-based absorber exhibits stable resonances with a wide range angles of obliquely incident electromagnetic waves.

© 2013 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.0310) Optics at surfaces : Thin films
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: June 26, 2013
Revised Manuscript: August 12, 2013
Manuscript Accepted: August 29, 2013
Published: September 30, 2013

Bing-zheng Xu, Chang-qing Gu, Zhuo Li, and Zhen-yi Niu, "A novel structure for tunable terahertz absorber based on graphene," Opt. Express 21, 23803-23811 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Geim, K. S. Novoselov, “The rise of graphene,” Nature Mat. 6, 183–191 (2007). [CrossRef]
  2. A. K. Geim, “Graphene: status and prospects,” Science 324, 1530–1534 (2009). [CrossRef] [PubMed]
  3. A. Fallahi, J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012). [CrossRef]
  4. H. J. Xu, W. B. Lu, Y. Jiang, Z. G. Dong, “Beam-scanning planar lens based on graphene,” Appl. Phys. Lett. 100, 051903 (2012). [CrossRef]
  5. H. J. Xu, W. B. Lu, W. Zhu, Z. G. Dong, T. J. Cui, “Efficient manipulation of surface plasmon polariton waves in graphene,” Appl. Phys. Lett. 100, 243110 (2012). [CrossRef]
  6. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef] [PubMed]
  7. S. Mikhailov, K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007). [CrossRef] [PubMed]
  8. Q. Bao, K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices.” ACS Nano 6, 3677–3694 (2012). [CrossRef] [PubMed]
  9. A. N. Grigorenko, M. Polini, K. S. Novoselov, “Graphene plasmonics,” Nature Photon. 487, 749–758 (2012). [CrossRef]
  10. M. Jablan, H. Buljan, M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  11. F. H. L. Koppens, D. E. Chang, F. J. G. de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11, 3370–3377 (2011). [CrossRef] [PubMed]
  12. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. 1, 97–105 (2007). [CrossRef]
  13. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization.” Opt. Express 16, 7181–7188 (2008). [CrossRef] [PubMed]
  14. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging.” Phys. Rev. B 79, 125104 (2009). [CrossRef]
  15. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization.” Appl. Phys. Lett. 95, 241111 (2009). [CrossRef]
  16. D. Y. Shchegolkov, A. K. Azad, J. F. OHara, E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers.” Phys. Rev. B 82, 205117 (2010). [CrossRef]
  17. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20, 28017–28024 (2012). [CrossRef] [PubMed]
  18. A. Andryieuski, A. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21, 9144–9155 (2013). [CrossRef] [PubMed]
  19. M. A. K. Othman, C. Guclu, F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21, 7614–7632 (2013). [CrossRef] [PubMed]
  20. Y. R. Padooru, A. B. Yakovlev, C. S. Kaipa, G. W. Hanson, F. Medina, F. Mesa, “Dual capacitive-inductive nature of periodic graphene patches: Transmission characteristics at low-terahertz frequencies,” Phys. Rev. B 87, 115401 (2013). [CrossRef]
  21. C. S. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012). [CrossRef]
  22. S. Thongrattanasiri, F. H. Koppens, F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012). [CrossRef] [PubMed]
  23. A. Ferreira, N. M. R. Peres, “Complete light absorption in graphene-metamaterial corrugated structures,” Phys. Rev. B 86, 205401 (2012). [CrossRef]
  24. A. Y. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in periodic graphene antidot arrays,” Appl. Phys. Lett. 101, 151119 (2012). [CrossRef]
  25. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012). [CrossRef]
  26. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. J. Choi, B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009). [CrossRef] [PubMed]
  27. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008). [CrossRef] [PubMed]
  28. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys 81, 109–162 (2009) [CrossRef]
  29. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotech. 7, 330–334 (2012). [CrossRef]
  30. D. Drew, X. Cai, A. Sushkov, G. Jenkins, M. Fuhrer, L. Nyakiti, V. Wheeler, R. L. Myers-Ward, N. Y. Garces, C. R. Eddy-Jr, D. K. Gaskill, “Single layer graphene plasmonic detector for broadband THz spectroscopy,” Bull. APS. 58, (2013).
  31. G. W. Hanson, “Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008). [CrossRef]
  32. V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19, 026222 (2007). [CrossRef]
  33. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nature Physics 4, 532–535 (2008) [CrossRef]
  34. C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, E. J. Choi, “Optical response of large scale single layer graphene,” Appl. Phys. Lett. 98, 071905 (2011). [CrossRef]
  35. J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, E. J. Choi, “Far-infrared study of substrate-effect on large scale graphene,” Appl. Phys. Lett. 98, 201907 (2011). [CrossRef]
  36. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, X. Luo, “Strong enhancement of light absorption and highly directive thermal emission in graphene,” Opt. Express 21, 11618–11627 (2013). [CrossRef] [PubMed]
  37. X. Wang, W. S. Zhao, J. Hu, “A Novel Tunable Antenna at Thz Frequencies Using Graphene-Based Artificial Magnetic Conductor (Amc),” Progress in Electromagnetics Research Letters 41, 29–38 (2013).
  38. P. Y. Chen, A. Alu, “Atomically thin surface cloak using graphene monolayers,” ACS nano 5(7), 5855–5863 (2011) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited