OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23812–23821

Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing

Zhilong Ou, Yongqin Yu, Peiguang Yan, Jishun Wang, Quandong Huang, Xue Chen, Chenlin Du, and Huifeng Wei  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23812-23821 (2013)
http://dx.doi.org/10.1364/OE.21.023812


View Full Text Article

Enhanced HTML    Acrobat PDF (1758 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel, simple, and compact optical fiber directional bending vector sensor based on Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. The device consists of a piece of seven-core photonic crystal fiber (PCF) sandwiched between two single mode fibers (SMFs) with a lateral offset splicing joint that covering two cores of PCF. Bending sensitivity of the seven-core PCF based MZI is changed by an axial rotation angle, which shows its capacity for recognizing positive and negative directions. Within a curvature range of −7.05 m−1 to 7.05 m−1, the calculated bending sensitivities of two resonant central wavelengths with opposite fiber orientations are 1.232 nm/m−1 and 1.174 nm/m−1, respectively. This novel MZI is formed by invoking interference between the LP01-like supermode and other higher order supermodes in the core, which leads to insensitive to ambient refractive index (ARI). We have also investigated the transmission characteristics of the sensor with the temperature change.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Sensors

History
Original Manuscript: July 1, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 24, 2013
Published: September 30, 2013

Citation
Zhilong Ou, Yongqin Yu, Peiguang Yan, Jishun Wang, Quandong Huang, Xue Chen, Chenlin Du, and Huifeng Wei, "Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing," Opt. Express 21, 23812-23821 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23812


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Patrick, C. C. Chang, and S. T. Vohra, “Long period fiber gratings for structural bending sensing,” Electron. Lett.34(18), 1773–1775 (1998). [CrossRef]
  2. Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, “Temperature-independent bending sensor with tilted fiber Bragg gratinginteracting with multimode fiber,” Opt. Commun.282(19), 3905–3907 (2009). [CrossRef]
  3. L. Shao, L. Xiong, C. Chen, A. Laronche, and J. Albert, “Directional Bend Sensor Based on Re-Grown Tilted Fiber Bragg Grating,” J. Lightwave Technol.28(18), 2681–2687 (2010). [CrossRef]
  4. S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett.37(10), 1610–1612 (2012). [CrossRef] [PubMed]
  5. P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express20(27), 28557–28562 (2012). [CrossRef] [PubMed]
  6. D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. Jones, “Bend Sensors with Direction Recognition Based on Long-Period Gratings Written in D-Shaped Fiber,” Appl. Opt.43(29), 5425–5428 (2004). [CrossRef] [PubMed]
  7. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun.284(12), 2849–2853 (2011). [CrossRef]
  8. D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett.36(22), 4380–4382 (2011). [CrossRef] [PubMed]
  9. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett.32(21), 3074–3076 (2007). [CrossRef] [PubMed]
  10. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett.37(21), 4480–4482 (2012). [CrossRef] [PubMed]
  11. X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, and C. Y. Wang, “Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber,” Opt. Lett.37(12), 2292–2294 (2012). [CrossRef] [PubMed]
  12. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett.33(1), 71–73 (2008). [CrossRef] [PubMed]
  13. X. H. Fang, M. L. Hu, B. W. Liu, L. Chai, C. Y. Wang, and A. M. Zheltikov, “Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber,” Opt. Lett.35(14), 2326–2328 (2010). [CrossRef] [PubMed]
  14. D. Taylor, C. Bennett, T. Shepherd, L. Michaille, M. Nielsen, and H. Simonsen, “Demonstration of multi-core photonic crystal fibre in an optical interconnect,” Electron. Lett.42(6), 331–333 (2006). [CrossRef]
  15. B. Kim, T. H. Kim, L. Cui, and Y. Chung, “Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,” Opt. Express17(18), 15502–15507 (2009). [CrossRef] [PubMed]
  16. X. Chen, C. Zhang, D. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core polymer fiber,” IEEE Photon. Technol. Lett.22(11), 850–852 (2010). [CrossRef]
  17. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett.34(3), 322–324 (2009). [CrossRef] [PubMed]
  18. T. L. Cheng, C. Lu, M. L. Hu, Y. F. Li, and Q. Y. Wang, “Theoretical Study on a Cluster-Seven-Core Photonic Crystal Fiber with High Nonlinearity and High-Power Endurance,” Chin. Phys. Lett.27(11), 114210 (2010). [CrossRef]
  19. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. A17(7), 1333–1340 (2000). [CrossRef] [PubMed]
  20. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach–Zehnder interferometer,” Rev. Sci. Instrum.73(4), 1702–1705 (2002). [CrossRef]
  21. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt.17(13), 2080–2085 (1978). [CrossRef] [PubMed]
  22. N. H. Vu, I. K. Hwang, and Y. H. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett.33(2), 119–121 (2008). [CrossRef] [PubMed]
  23. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, “Optical Bend Sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett.12(5), 531–533 (2000). [CrossRef]
  24. Z. He, Y. Zhu, and H. Du, “Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber,” Opt. Express15(4), 1804–1810 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited